RELATED APPLICATIONS
This application claims priority to, and the benefit of U.S. Ser. No. 60/184,269, filed Feb. 23, 2000, the disclosure of which is incorporated by reference herein.
GOVERNMENT SUPPORT
Work described heroin was supported, in part, by Federal Grant No. EY 13019 and National Institutes of Health Grant No. HL 50665. The U.S. Government has certain rights in the invention.
FIELD OF THE INVENTION
The present invention relates generally to the field of physiological dysfunctions associated with Pseudoxanthoma elasticum. More particularly, the invention is concerned with the identification of a gene associated with Pseudoxanthoma elasticum, as well as mutations in the gene that cause the disease. The present invention also relates to methods for detecting and diagnosing Pseudoxanthoma elasticum, to methods for identifying carriers of mutant and normal alleles of the gene associated with Pseudoxanthoma elasticum, to methods for screening compounds to identify potential therapeutics for Pseudoxanthoma elasticum, to treatment methods for Pseudoxanthoma elasticum, and to useful cell lines and animal models of the disease.
BACKGROUND OF THE INVENTION
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by mineralization of elastic fibers in skin, arteries and the retina, that result in dermal lesions with associated laxity and loss of elasticity, arterial insufficiency, cardiovascular disease and retinal hemorrhages leading to macular degeneration.
The skin manifestations are among the most common characteristics of PXE, but the ocular and cardiovascular symptoms are responsible for the morbidity of the disease. Characteristic skin lesions are generally an early sign of PXE and were first described by a French dermatologist in 1896. Skin lesions are usually detected during childhood or adolescence and progress slowly and often unpredictably. Therefore, the initial diagnosis of PXE is sometimes made by a dermatologist. The skin lesions consist of yellowish papules and plaques and laxity with loss of elasticity, and result from an accumulation of abnormal mineralized elastic fibers in the mid-dermis. Lesions are typically seen on the face, neck, axilla, antecubital fossa, popliteal fossa, groin and periumbilical areas. A PXE diagnosis can be confirmed by a skin biopsy that shows calcification of fragmented elastic fibers in the mid- and lower dermis.
Another characteristic of PXE is the presence of ocular lesions due to the accumulation of abnormal elastic fibers in the Bruch's membrane, resulting in angioid streaks. Doyne was the first to describe these ocular streaks in 1889, and Knapp introduced the term “angioid streaks” for their resemblance to blood vessels. The combination of PXE and ocular manifestations was initially referred to as the Gronblad-Strandberg syndrome, after the names of two ophthalmologists who independently related the occurrence of angioid streaks to PXE in 1929. The majority of PXE patients (approximately 85%) develop ocular manifestations during their second decade of life. Bilateral angioid streaks are normally seen as linear gray or dark red lines with irregular serrated edges lying beneath normal retinal blood vessels and represent breaks in the Bruch's membrane. The Bruch's membrane is not in a true sense a “membrane” but rather a heterogeneous elastin-rich layer separating the chorioid from the retina. The elastic laminae of the Bruch's membrane is located between two layers of collagen (type I, III and IV) which lie in direct contact with the basement membranes of the retinal pigmented epithelium (RPE) and the capillaries in the choriocapillary layer of the chorioid. As a consequence of angioid streaks, a PXE patient progressively develops a chorioidal neovascularization with a subsequent hemorrhagic detachment of the fovea and later scarring. Optic nerve drusen may also be associated with angioid streaks and results in visual field deficits and even advanced visual impairment.
Common cardiovascular complications of PXE are due to the presence of abnormal calcified elastic fibers in the internal elastic lamina of medium-sized arteries. The broad spectrum of phenotypes includes premature atherosclerotic changes, intimal fibroplasia causing angina or intermittent claudication or both, early myocardial infarction and hypertension. Fibrous thickening of the endocardium and atrioventricular valves can also result in restrictive cardiomyopathy. Approximately 10% of PXE patients also develop gastrointestinal bleeding and central nervous system complications (such as stroke and dementia) as a consequence of systemic arterial wall mineralization. In addition, renovascular hypertension and atrial septal aneurysm can be seen in PXE patients.
Strikingly, lung abnormalities are not a significant phenotypic feature of PXE, even though pulmonary tissues are rich in elastic fibers. Mineralization of pulmonary elastic fibers has only been noted in a few patients.
PXE is usually found as a sporadic disorder but examples of both autosomal recessive and autosomal dominant forms of PXE have been reported. Partial manifestations of the PXE phenotype have also been described in presumed carriers in PXE families. Recent reports have linked both the dominant and recessive forms of PXE to a 5 cM domain on chromosome 16P 13.1 However, the mechanisms underlying the physiological defects characteristic of PXE are not understood.
Therefore, there is a need in the art for methods and compositions for diagnosing and treating PXE and PXE associated phenotypes.
SUMMARY OF THE INVENTION
The invention provides methods and compositions for diagnosing and treating PXE and PXE associated physiological dysfunctions. According to the invention, mutations associated with PXE are located in the (MRP6) ABCC6 gene. Therefore, methods for detecting the presence of a mutation associated with PXE involve interrogating the (MRP6) ABCC6 gene, or a portion thereof, for the presence of one or more mutations that are associated with PXE. Accordingly, one aspect of the invention provides methods for identifying individuals that have one or two mutant alleles at the PXE locus. PXE is most often an autosomal recessive disease. Therefore, an individual with two mutant (MRP6) ABCC6 alleles associated with PXE will develop symptoms characteristic of the disease. In contrast, an individual with one mutant (MRP6) ABCC6 allele associated with PXE is a carrier of the disease and does not develop full-blown PXE. However, according to one embodiment of the invention, a PXE carrier may develop mild forms of the characteristic manifestations. Accordingly, a PXE carrier status can be indicative of a predisposition to PXE related symptoms such as eye, skin, or cardiovascular problems. In a preferred embodiment of the invention, genetic counseling is provided to an individual identified as having a mutation associated with PXE in one or both alleles of the PXE ((MRP6) ABCC6) locus.
In another aspect, the invention provides compositions for detecting the presence of a mutation associated with PXE at the (MRP6) ABCC6 locus. In a preferred embodiment, an oligonucleotide that hybridizes to the (MRP6) ABCC6 locus is used in a diagnostic assay. In a more preferred embodiment, the oligonucleotide includes a sequence complementary to a mutation that is associated with PXE. Alternatively, an antibody-based diagnostic assay is used to detect the presence of a mutation associated with PXE at the (MRP6) ABCC6 locus.
Other aspects of the invention include therapeutic uses of the (MRP6) ABCC6 gene or protein, drug screening, the identification of (MRP6) ABCC6 homologues in other organisms (including mammalian organisms), cellular and animal models of PXE, the identification of (MRP6) ABCC6 functional domains related to the PXE phenotype, the identification of regulators of (MRP6) ABCC6 expression (mutations in these regulators can also result in PXE related symptoms), the identification of genes/proteins that interact with (MRP6) ABCC6 (alterations in these interacting molecules can also cause PXE related symptoms).
Thus, in one series of embodiments the invention provides methods for screening for the presence of a PXE mutation by interrogating an MRP6 nucleic acid obtained from a patient for the presence of a PXE mutation. The screen is positive is the presence of a PXE associated mutation is detected. A PXE associated mutation is a mutation that causes the PXE phenotype in an individual that is homozygous for the mutation. PXE associated mutations also causes the PXE phenotype in an individual that is a compound heterozygote with two different mutant alleles at the MRP6 locus, wherein each allele is a PXE associated allele. Nucleic acid is isolated from a patient biological sample, and the biological sample is preferably blood, saliva, amniotic fluid, or tissue such as a biopsy tissue. According to the invention, an MRP6 nucleic acid is a nucleic acid obtained from the MRP6 locus. An MRP6 nucleic acid can be mRNA, genomic DNA or cDNA from the MRP6 locus, or a PCR product of any of the above. According to the invention, the MRP6 locus includes the MRP6 exons, introns, and associated promoter and regulatory sequences in the genome surrounding the MRP6 exons.
In one series of embodiments, a PXE associated mutation is detected in MRP6 using a nucleic acid based detection assay. Preferred nucleic acid based detection assays include hybridization assays, primer extension assays, SSCP, DGGE, RFLP, LCR, DHPLC, and enzymatic cleavage assays. In another series of embodiments, a PXE associated mutation is detected in a protein based detection assay. Preferred protein based detection assays include ELISA and a Western blot assays. In one embodiment of the invention, mutation detection assays are provided to screen the MRP6 locus or a portion thereof to determine whether a mutation is present. The lack of MRP6 expression or the expression of a physically aberrant form of MRP6 may be sufficient to determine that an individual has a PXE associated mutation at the MRP6 locus. Alternatively, the determination that a mutation is present in the MRP6 locus may not be sufficient to determine the PXE status of an individual in the absence of information concerning the specific identity of the mutation. If such a mutation is present, it may be identified according to methods of the invention, for example by sequencing the region of the MRP6 locus that contains the mutation. Once a mutation is identified in a patient sample, the PXE status of the patient can be determined according to methods of the invention. In an alternative embodiment of the invention, specific mutation detection assays are provided to detect a known PXE associated MRP6 mutation in a patient sample.
In another series of embodiments, the invention provides oligonucleotide probes or primers and antibodies for use in mutation detection assays or screens according to the invention.
In another series of embodiments, the invention provides methods for screening candidate drug compounds to identify therapeutic compounds for treating PXE patients (individuals that have PXE due to the presence of two recessive PXE associated MRP6 alleles, or one apparently dominant PXE allele) or PXE carriers (individuals with one normal MRP6 allele and one allele with a PXE associated mutation).
In another series of embodiments, the invention provides methods for treating PXE patients or carriers using a normal MRP6 nucleic acid or protein to restore normal MRP6 function to the individual or to specific cells or tissues or the individual.
In another series of embodiments, the invention provides methods for creating transgenic or knockout cell lines and animals in order to provide a model system for PXE.
In another series of embodiments, the invention provides methods for identifying compounds such as other intracellular proteins that interact with MRP6 thereby to identify additional therapeutic targets for PXE treatment.
Accordingly, the invention provides methods and compositions for unambiguously determining the PXE status of an individual. The invention provides methods for detecting deletions, substitutions, insertions, and rearrangements in the MRP6 locus that are associated with PXE. In preferred embodiments, the invention provides methods for identifying mutations known to be associated with PXE. Preferred mutations include mutations that affect one or more of the bases in codons 1114, 1138, 1141, 1298, 1302, 1303, 1314, 1321 and other codons identified herein as being important for normal MRP6 function. Alternatively, the invention provides methods to identify mutations that result in non-conservative substitutions in the MRP6 locus. In a further embodiment, the invention provides assays to detect PXE associated mutations at intron/exon splice sites of the MRP6 gene. The invention also provides methods to detect mutations that affect one or more regulatory elements of the MRP6 gene, including the promoter, the polyA site and other transcriptional or translational control sequences.
Methods of the invention are also useful to screen a population in order to identify individuals with one or more PXE associated MRP6 alleles. According to the invention, these individuals are provided with appropriate genetic counseling in view of their PXE status.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the structure of the MRP6 gene and the surrounding genomic regions. Two (MRP6) ABCC6 mutations that cause PXE are indicated. FIG. 1a shows the 820 kb genomic region between markers D16S3060 and D16S79 at 16p13.1; FIG. 1b shows the gene content of the genomic region with the transcriptional orientation of the genes indicated by arrows and a flag representing the position of polymorphic marker (GAAA17); FIG. 1c shows the intron/exon structure of the (MRP6) ABCC6 gene with intron sizes drawn approximately to scale and exons numbered from the 5′ end of the (MRP6) ABCC6 gene; FIG. 1d shows chromatograms of partial DNA sequence from two unrelated PXE patients containing a nonsense and a splice site mutation in exon 24 and intron 21 respectively; FIG. 1e shows the sequence of the normal and mutant nucleotide and amino acid sequences for the nonsense mutation in exon 24 and the splice site variant within intron 21.
FIG. 2 shows the predicted topology of the MRP6 protein and the location of ten mutations causing PXE.
FIG. 3 shows conserved amino acids in the human MRP6 protein.
FIG. 4 shows co-segregation of the PXE phenotype with the R1141X mutation in exon 24 of the (MRP6) ABCC6 gene.
FIG. 5 shows segregation of the PXE phenotype for an apparent autosomal dominant mutation.
FIG. 6 shows a construct for deleting exon 28 in a mouse.
DETAILED DESCRIPTION OF THE INVENTION
The invention provides methods and compositions for diagnosing and treating PXE and PXE related symptoms. Methods and compositions of the invention rely in part on the discovery that mutations associated with PXE map to the (MRP6) ABCC6 gene locus on chromosome 16. Accordingly, the invention provides useful PXE related diagnostic and therapeutic methods and compositions by exploiting wild-type and mutant (MRP6) ABCC6 genes and proteins.
I. PXE Associated Mutations in the (MRP6) ABCC6 Gene
a) Mapping of PXE Associated Mutations to the (MRP6) ABCC6 Genetic Locus
Although the first case of PXE was reported by Darier in 1896, most PXE cases have been reported since the 1970s. In most reports, PXE is inherited as an autosomal recessive (AR) phenotype or appears as a sporadic phenotype. However, kindreds showing apparent autosomal dominant (AD) inheritance have also been reported. Using DNA from patients and unaffected family members from 21 unrelated PXE families, the PXE phenotype was linked to the short arm of chromosome 16. A very significant linkage with an 8 cM region was demonstrated with a maximum lod score of 8.07. A subsequent haplotype analysis and recombination mapping reduced the locus from 8 cM to 820 kb where six candidate genes were identified. The locus was later reduced to less than 600 kb and one candidate gene was excluded. All 109 exons of the five remaining candidate genes were screened by a combination of single-strand conformation polymorphism (SSCP), heteroduplex analysis (HA) or direct sequencing using genomic DNA from a cohort of 17 unrelated PXE patients and three unrelated normal individuals. The first six mutations, clearly associated with the PXE phenotype, were found in the (MRP6) ABCC6 gene (also known as the ABCC-6 gene). This analysis is described in further detail in Example 2. According to the invention, the MRP6 gene has 31 exons as shown in FIG. 1. A 107.7 kb genomic sequence that includes the MRP6 locus is shown in SEQ ID NO: 1. The sequence of SEQ ID NO: 1 shows the complementary strand of the MRP6 gene. The intron/exon boundaries are as follows (on the complementary strand of SEQ ID NO: 1): Ex1: 102783-102748; Ex2: 101180-100998; Ex3: 99296-99171; Ex4: 99031-98903; Ex5: 93798-93676; Ex6: 91594-91533; Ex7: 88207-88076; Ex8: 82954-82757; Ex9: 81524-81347; Ex10: 77528-77367; Ex11: 72268-72176; Ex12: 69718-69515; Ex13: 68325-68182; Ex14: 66562-66475; Ex15: 64385-64310; Ex16: 62282-62156; Ex17: 61940-61764; Ex18: 58324-58157; Ex19: 56985-56811; Ex20: 55345-55270; Ex21: 52757-52637; Ex22: 49588-49381; Ex23: 45578-45268; Ex24: 42837-42638; Ex25: 41209-41083; Ex26: 39226-39125; Ex27: 37453-37307; Ex28: 34674-34516; Ex29: 34437-34271; Ex30: 30412-30218; Ex31: 29881-29773. The mRNA coding sequence for human MRP6 is shown in SEQ ID NO: 2, and the encoded protein sequence is shown in SEQ ID NO: 3.
b) Identifying PXE Associated Mutations in the (MRP6) ABCC6 Locus
According to methods of the invention, additional PXE associated mutations were identified in the (MRP6) ABCC6 locus using a combination of single strand conformation polymorphism (SSCP), heteroduplex analysis (HA) and direct sequencing. Single nucleotide mutations in the (MRP6) ABCC6 gene were identified in several cohorts of individuals originating from the United States, South Africa and several European countries (Belgium, Germany, Holland, Italy and United Kingdom). To confirm the causative or polymorphic nature of new variants, a control panel of 300 alleles (150 normal individuals) was screened and the co-segregation of the identified variant and the PXE phenotype was verified. It is noteworthy that two single-allele mutations (R1141X, R1339C) were found in control panels of normal individuals indicating that heterozygote mutant (MRP6) ABCC6 alleles can be found in the normal population. However, the missense mutation (R1339C) was identified in the genetically distinct Afrikaners of South Africa. The frequency of heterozygote carriers deduced only from the appearance of these heterozygote mutations is 1.3 percent and is consistent with the commonly accepted figures of 0.6 to 2.5%. Indeed, while most mutations appeared to be private, a few have been clearly identified as recurrent (R1141X, R518Q, 3775delT, 16.5 kb deletion between exon 22 and 29. Most of the mutations (63%) were missense substitutions, 17% were nonsense mutations (5), 13% were frameshift mutations (4 deletions or an insertions of a single nucleotide) and 7% were likely to affect splicing (2).
Twenty-seven of the mutations (90%) affected the C-terminal half of the (MRP6) ABCC6 protein and particularly the various domains of the C-terminal ATP-binding site, which are encoded by exons 28 to 30, where 12 (40%) mutations were clustered. Remarkably, 10 mutations (33%) affected arginyl residues. Eight of these were missense substitutions, suggesting an essential structural or functional role for these arginyl residues in (MRP6) ABCC6.
Large deletions, which are not detected by SSCP or HA, can be identified by the loss of heterozygosity of informative polymorphic markers. Seven highly informative microsatellites present in a 300 kb region encompassing both ABCC1 and ABCC6, have been successfully used to detect large deletions involving parts or the entire ABCC6 gene. The loss of heterozygosity can also be efficiently implemented by using several highly polymorphic variants present in the ABCC6 gene. The latter approach was used to detect a partial deletion of the (MRP6) ABCC6 gene, in a compound heterozygous state, in a family with an apparent dominant form of PXE, as discussed in Example 3. A non-limiting list of known PXE associated mutations at the MRP6 locus are shown in Table 1.
TABLE 1Known PXE associated mutations at the human MRP6 locus.MutationsStatusEffectNt changeStatusOriginExons—938-939insTch, htA 8R568Q1553G>Ach, hta,u12F568S1703T>ChtU13L673P2018T>CchA16—1995delGchG16—2322delChtU18Y768X2204C>Ach, htA18—IVS21+1G>TchUIntron 21R1030X3088C>ThtA23R1114P3341G>ChmUk24S1121W3362C>GchG24R1138P3413G>CchG24R1138Q3413G>AchUk24R1141X3421C>TallAll24G1203D3608G>A25—IVS26-1G>AchBIntron 26W1241C3723G>C26Q1237X3709C>TchB26—3775delTht, hma, u, h27V1298F3892G>ThtU28T1301I3902C>TchB28G1302R3904G>AhtU28A1303P3907G>CchB28R1314W3940C>ThmU28R1314Q3941G>AhtG28G1321S3961G>AhtU28R1339C4015C>Talla, u28Q1347H4041G>ChtU28D1361N4081G>AchG29R1398X4192C>TchB29I1424T4271T>ChtU30ch = compound heterozygote; ht = heterozygote; hm = homozygote; ivs = intervening sequence
According to methods of the invention, additional PXE associated mutations can be identified in the (MRP6) ABCC6 locus according to methods of the invention. For example, single strand conformation polymorphism (SSCP), heteroduplex analysis (HA), or direct sequence analysis can be used to identify additional mutations at the MRP6 locus. In one embodiment, the analysis is performed on genomic DNA. Alternatively, the analysis is performed on cDNA or on exon containing DNA amplification products such as exon containing PCR products. Deletion mutations are preferably detected using diagnostic PCR assays of genomic DNA and by Southern hybridization according to methods known in the art. In addition, fluorescent in situ hybridization (FISH) analysis of human chromosome preparations can be used to identify a deletion at the MRP6 locus or a deletion that encompasses all or part of the MRP6 locus. Specific mutations are preferably identified using DNA arrays including mutation specific oligonucleotide probes. Alternatively, mutation-specific antibodies can be used to detect mutations that alter an existing epitope or create a new specific epitope on the MRP6 protein. Preferably, specific antibodies are used on proteomic chips to detect protein altering mutations in the MRP6 gene. Mutations can also be detected using mass spectrometry, and mutation-specific mass spectrometer profiles can be generated for MRP6 nucleic acid or protein analysis according to methods known in the art.
c) PXE Associated Mutations at the (MRP6) ABCC6 Locus
i) The (MRP6) ABCC6 Gene and Protein
The (MRP6) ABCC6 gene, also known as the ABBC6 gene, encodes an ATP-binding cassette transporter (an ABC transporter) belonging to sub-family “C” which includes genes involved in drug-resistance such as MRP1 to 6 (ABCC1-6). (MRP6) ABCC6/ABCC6 encodes a 165 kDa protein that is located in the plasma membrane and has 17 membrane-spanning helices grouped into three transmembrane domains. MRP6 is highly homologous to MRP 1 and may act as an efflux pump of amphipathic anion conjugates. Accordingly, in one aspect of the invention, MRP6 transports glutathione anion conjugates and also anionic drugs. Therefore, an individual that is a PXE carrier or a PXE homozygote or compound heterozygote may have reduced transport of anionic drugs and may be more receptive to chemotherapy using such drugs. The ABCC family of genes also includes the cystic fibrosis transmembrane conductance regulator gene (ABCC7 or CFTR) and the sulfonylurea receptor genes (ABCC8 and 9 or SUR).
Therefore, in contrast to genetic changes involved in other elastic fiber diseases such as Supravalvular Aortic Stenosis (SVAS), Marfan syndrome, and Cutis laxa, PXE associated mutations in the (MRP6) ABCC6 gene are not directly related to elastic fibers. The (MRP6) ABCC6/ABCC6 gene is expressed at relatively high levels in a limited range of tissues, notably in kidney and liver. However, low levels of expression are also observed in smooth muscle cells and macrophages. According to the invention, this tissue distribution suggests that (MRP6) ABCC6 has a function related to cellular detoxification which may affect the calcification of elastic fibers in skin, arteries and the retina. Alternatively, calcification of elastic fibers in skin, arteries, and the retina may result from MRP6 functional deficiencies in those tissues.
The predicted structure of the MRP6 protein is shown in FIG. 2. Transmembrane domains (unshaded rectangles), nucleotide-binding fold regions (NBF) and Walker motifs are indicated and were identified by amino acid sequence homology with similar transporters. Arrows indicate the positions of several PXE associated mutations. The large shaded rectangle represents the cell membrane.
According to the invention, the transmembrane domains of the MRP6 protein shown in FIG. 2 are hydrophobic stretches of amino acids identified via transmembrane domain predictions (SOSUI and DAS transmembrane prediction programs, http://www.biokemi.su.se/-server/DAS/; http://azusa.proteome.bio.tuat.ac.jp/sosui/). Regions of MRP6/ABCC6 with a high degree of conservation when compared with similar proteins (ABC transporters) include the regions involved in the binding and hydrolysis of ATP also known as nucleotide binding folds (NBF). According to the invention, the MRP6 protein has two nucleotide-binding fold regions (NBF1 and NBF2) as shown in FIG. 2. These regions correspond to the following amino acid segments of the human MRP6 protein: NBF1 residues 656-679, 747-768, and 775-784 of SEQ ID NO: 3; and NBF2 residues 1292-1307, 1321-1327, and 1403-1433 of SEQ ID NO: 3.
According to one embodiment of the invention, conserved amino acids in the MRP6 protein are amino acids identified by comparing 12 ABC transporter proteins from Human, Rat, Mouse, C. elegans, Yeast (S. cerevisiae) and A. thaliana. Preferred conserved amino acids are shown in FIG. 3 (conserved amino acids are underlined). According to the invention, conserved domains are concentrated in the C-terminal portion of the protein, where over 90% of the PXE causing mutations have been identified.
ii) Mutations in the (MRP6) ABCC6 Gene
According to one aspect of the invention, PXE is caused by a mutation at the (MRP6) ABCC6 locus that results in reduced MRP6 protein function. PXE associated mutations include mutations that affect the level of MRP6 protein expression in addition to mutations that alter the functional properties of an expressed MRP6 protein. PXE associated mutations at the (MRP6) ABCC6 locus include chain-terminating mutations. Such mutations are typically recessive and account for the autosomal recessive nature of the associated PXE phenotype. However, PXE associated mutations identified at the (MRP6) ABCC6 locus include chain terminating mutations at different positions in the (MRP6) ABCC6 gene, and several substitution, deletion and insertion mutations. According to the invention, the C-terminal half of the MRP6 protein is functionally important. Indeed, many of the PXE associated mutations were identified in exons 23-29. However, even a I to T substitution at position 1424 (out of 1503 amino acid residues) results in a PXE associated phenotype. Accordingly, a chain terminating or frameshift mutation in any one of exons 1-29, even up to position 1424 in exon 30, and maybe even beyond is expected to be associated with PXE. According to the invention, the PXE phenotype associated with different mutations in the (MRP6) ABCC6 gene varies in relation to the functional properties of the mutant (MRP6) ABCC6 protein product. Therefore, individuals with different PXE associated mutations can have PXE symptoms of differing severity. In addition, different individuals having the same PXE mutations, but in different genetic backgrounds, can also develop PXE symptoms of differing severity. Accordingly, different mutations at the PXE locus are expected to result in PXE phenotypes of differing severity. For example, in one embodiment of the invention, a mutation that results in the absence of MRP6 protein expression (for example a deletion of part or all of the gene, a chain terminating mutation, a mutation that prevents mRNA production, or a mutation that prevents translation of the mRNA) is expected to have a more severe PXE phenotype than a mutation that interferes with normal MRP6 protein function without destroying the function (for example an amino acid substitution that alters the structure and function of the protein without inactivating it. In particular, an individual that is a homozygote for a mutation that prevents MRP6 protein expression, or that is a compound heterozygote with two different mutations each of which prevents MRP6 protein expression, is expected to have a more severe phenotype than an individual that has a mutation with less severe effects on MRP6 protein function at one or both alleles of the MRP6 locus.
In a further embodiment of the invention, a heterozygote carrier of a PXE mutation can exhibit characteristic manifestations of PXE. In particular, a carrier of a recessive mutation can show partial skin, eye or cardiovascular symptoms. According to the invention, heterozygote carriers of different (MRP6) ABCC6 mutations can develop different subsets of PXE related symptoms and can have symptoms of varying severity. Indeed, there are numerous examples of dermal “elastic fibers changes” or cardiovascular abnormalities ranging from hypertension to myocardial infarction, in family members of severely affected individuals. According to the invention, cases of partial expression of PXE symptoms in heterozygote carriers are cases that had been assumed to be examples of dominant inheritance with for example 10 to 20% penetrance.
The various subtypes of a disorder or a dual mode of inheritance of a disease are frequently due either to mutations in different genes or different mutations in the same gene. Epidermolysis buflosa (EB) is an excellent example of a disorder characterized by several clinical types caused by distinct mutations in the same gene or mutations in different genes. EB is viewed as a group of heritable mechano-bullous skin diseases classified into three major categories of simplex, junctional and dystrophic forms. EB simplex is due to mutations in the genes encoding keratins 5 and 14, the junctional form is associated with mutations in the kalininl7aminin 5 genes; and the dystrophic disorder result from mutations in the type VII collagen gene (COL7Al). The dystrophic EB presents clinical sub-types: the Hallopeau-Siemens type is autosomal recessive and caused by nonsense mutations and glycine substitutions result in the autosomal dominant form.
In contrast to EB, no locus heterogeneity has been shown for PXE. According to the invention, most cases of PXE, if not all, are due to (MRP6) ABCC6 mutations. While the clinical heterogeneity in PXE patients may be caused by different types of (MRP6) ABCC6 mutations, the different PXE lesions (vascular, ocular, and dermal) observed for different autosomal recessive and seemingly dominant PXE mutations are clinically indistinguishable. Furthermore, identical PXE mutations can be either recessive or apparently dominant in unrelated pedigrees. Accordingly, different PXE mutations in different genetic backgrounds are associated with different severities of PXE symptoms. Furthermore, a PXE mutation can result in a partial PXE phenotype in a carrier individual (thereby accounting for observations of apparent dominant forms of PXE).
iii) Population Distributions of (MRP6) ABCC6 Mutations
According to the invention, different PXE associated (MRP6) ABCC6 mutations exist in the population, and new (MRP6) ABCC6 mutations arise sporadically. Based on current estimations of the prevalence of PXE in the United States (between 1:100,000 and 1:25,000), the frequency of appearance of heterozygote individuals with PXE mutations should be between 0.6 and 2.5 percent of the general population (1.5 to 6.0 million individuals). Given the risk of heterozygote individuals having children with PXE, an important aspect of the invention is to provide a genetic screen to identify heterozygote carriers of PXE mutations. According to the invention, a PXE carrier is an individual with one mutant allele of the (MRP6) ABCC6 gene, wherein the mutant allele is an allele that results in a PXE phenotype in an individual that is homozygous for that allele (or in an individual that is heterozygous with two different (MRP6) ABCC6 mutant alleles, each of which is associated with PXE).
According to a further embodiment of the invention, a significant factor in the complex phenotype of the PXE multi-organ disorder is partial expression of the fill range of the PXE symptoms in heterozygote carriers in recessive pedigrees. For example, a single mutant-ABCC6 allele, for example R1141X, within heterozygote carriers can manifest a partial, mostly vascular-related phenotype. Indeed, cardiovascular abnormalities are frequently seen in obligate carriers but ocular and dermal lesions have also been diagnosed. The PXE phenotype, as observed in several heterozygous carriers, range from sub-clinical manifestations to visible lesions. The spectrum of these partial phenotypes overlaps with that of the less severely affected PXE patients. There is, therefore, a continuum in the PXE phenotype between heterozygous carriers and PXE patients, which make the clinical diagnosis of the less severe forms of PXE equivocal. According to the invention, cardiovascular symptoms associated with PXE mutations at the MRP6 gene include atherosclerosis, hypertension, stroke, gastrointestinal bleeding, intermittent claudication. Ocular symptoms include macular or retinal degeneration and skin related symptoms include premature aging and solar elastosis.
According to the invention, the identification of the PXE gene provides methods for an unambiguous molecular diagnosis of patients and the identification of heterozygous carriers in families with autosomal recessive PXE or apparent autosomal dominant PXE, and the identification of homozygous PXE individuals or PXE carriers in the general population.
According to the invention, different populations can contain different characteristic PXE associated MRP6 mutations or different frequencies of PXE associated MRP6 mutations due to factors such as founder effects. For example, a founder effect in the South African Afrikaner population is thought to have caused the observed higher frequency of PXE in Afrikaners. According to the invention, a higher frequency of PXE in a population correlates with a higher frequency of PXE associated MRP6 mutations.
Intra-familial variation of the phenotype is a well known characteristic of PXE. These variations may be due to genetic and/or environmental causes. A few environmental factors are thought to influence the PXE phenotype. Among these, calcium and Vitamin D have been reported to contribute to the severity of the phenotype in some cases. Life style, smoking, diet, sun-exposure and obesity are also likely to modulate the penetrance of the phenotype. Indeed, remarkably dissimilar PXE phenotypes have been observed recently in identical twins. According to the invention, non-genetic factors contributing to the development of PXE symptoms in heterozygote carriers can be identified. Studies involving large cohorts of twins for example, such as those used by the Queensland Institute of Medical Research of Australia (http://gene12i.qimr.ed are also useful to identify both genetic and environmental factors related to the development of the PXE phenotype.
II. Diagnostic Applications
(MRP6) ABCC6 genes and gene products, including mutant genes and gene products, as well as probes, primers, and antibodies, are useful for identifying carriers of PXE associated mutations. According to the invention, PXE associated mutations can be identified in families with a PXE pedigree or in individuals not previously known to be at risk of carrying a PXE related mutation. PXE associated mutations can be routinely screened using probes to detect the presence of a mutant (MRP6) ABCC6 gene or protein by a variety of methods. In preferred embodiments of the invention, individuals are screened for the presence of a recurrent mutation that is known to be present at a relatively high frequency in the population. For example, a preferred method of the invention screens an individual from a population for the presence of an MRP6 mutation that accounts for about 30%, and preferably 50%, and more preferably over 50%, of known incidences of PXE in the population. An alternative method of the invention screens an individual for the presence of two or more, preferably about five, more preferably about ten, and even more preferably over ten PXE associated MRP6 mutations. In methods that include assays for a plurality of PXE associated MRP6 mutations, the plurality of mutations preferably account for about 30%, and more preferably 50%, and even more preferably over 50%, of known incidences of PXE in the population.
In one aspect of the invention, the identification of a specific mutation is not necessary. A diagnostic assay may be based on the detection of an MRP6 protein expression defect resulting from, for example, reduced levels of mRNA expression. Indeed, the analysis of steady state levels of (MRP6) ABCC6 mRNA in skin fibroblasts from a PXE patient carrying a homozygous R1141X mutation showed that MRP6 mRNA levels were lower than in skin fibroblasts from a normal individual. Accordingly, low levels MRP6 mNRA can result from a mutation within the coding sequence, such as a nonsense mutation that results in nonsense mediated decay. In addition, low mRNA levels can be caused by mutations either an intron or an exon that destabilizes the RNA, or by a mutation in a regulatory region (including a promoter region) that reduces transcription of the MRP6 gene. Furthermore, the presence of a truncated MRP6 mRNA can be used as a diagnostic indicator for the presence of a PXE associated mutation.
Alternatively, the presence of a mutation that affects the amount, size, or other physical properties of the MRP6 protein can be detected without knowing the identity of the mutation. For example a decreased level of MRP6 protein or a the presence of a truncation in the MRP6 protein can be used as a diagnostic indicator for the presence of a PXE associated mutation. In addition, the presence of a larger than expected MRP6 protein (that may result for example, from a gene fusion or from one or more frameshift mutations that produce a larger and possibly non-functional protein) can be used as a diagnostic inidicator for the presence of a PXE associated mutation.
Accordingly the invention provides a method for screening for the presence of a PXE associated mutation at the MRP6 locus without specifically identifying the mutation. Such methods are useful to identify homozyogtes, compound heterozygotes, or carriers.
According to the invention, the identification of the presence of any PXE associated mutation at the MRP6 locus can be used as a positive diagnosis of PXE in an individual with PXE symptoms or to diagnose a PXE patient who has not yet developed PXE symptoms but who is identified as a homozygote or a compound heterozygote for PXE associated MRP6 mutations. Alternatively, the detection of the presence of a PXE associated MRP6 mutation according to the invention provides a method for screening a population to identify individuals who are carriers of a PXE associated mutation.
In general, a PXE carrier is distinguished from a PXE homozygote by the presence of both a normal allele and a PXE mutant allele in the carrier and the presence of two PXE mutant alleles in the homozygote. According to the invention, a normal allele can contain a neutral polymorphism as disclosed herein.
a) Nucleic Acid Based Diagnostics
When a diagnostic assay is to be based upon nucleic acids from a sample, the assay may be based upon mRNA, cDNA or genomic DNA. If mRNA is used from a sample, there may be little or no expression of transcripts unless appropriate tissue sources are chosen or available. Preferred tissue sources are biopsies of full thickness skin or skin fibroblasts cultured from dermal biopsies. Whether mRNA, cDNA or genomic DNA is assayed, standard methods well known in the art may be used to detect the presence of a particular sequence either in situ or in vitro (see, e.g., Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Press, Cold Spring Harbor, N.Y.). As a general matter, however, any tissue with nucleated cells may be examined.
Genomic DNA used for the diagnosis may be obtained from body cells, such as those present in the blood, tissue biopsy, surgical specimen, or autopsy material. The DNA may be isolated and used directly for detection of a specific sequence or may be amplified by the polymerase chain reaction (PCR) prior to analysis. Similarly, RNA or cDNA may also be used, with or without PCR amplification. To detect a specific nucleic acid sequence, direct nucleotide sequencing, hybridization using specific oligonucleotides, restriction enzyme digest and mapping, PCR mapping, RNase protection, chemical mismatch cleavage, ligase-mediated detection, and various other methods may be employed. Oligonucleotides specific to particular sequences can be chemically synthesized and labeled radioactively or non-radioactively (e.g., biotin tags, ethidium bromide), and hybridized to individual samples immobilized on membranes or other solid-supports (e.g., by dot-blot or transfer from gels after electrophoresis), or in solution. The presence or absence of the target sequences may then be visualized using methods such as autoradiography, fluorometry, or colorimetry. These procedures can be automated using redundant, short oligonucleotides of known sequence fixed in high density to silicon chips, or in other oligonucleotide array formats.
Whether for hybridization, RNase protection, ligase-mediated detection, PCR amplification or any other standards methods described herein and well known in the art, a variety of subsequences of the MRP6 sequences disclosed or otherwise enabled herein will be useful as probes and/or primers. These sequences or subsequences will include both normal MRP6 sequences and PXE associated MRP6 mutant sequences. In general, useful oligonucleotide probes or primer sequences will include at least 8-9, more preferably 10-50, and most preferably 18-24 consecutive nucleotides from the MRP6 introns, exons or intron/exon boundaries. Depending upon the target sequence, the specificity required, and future technological developments, shorter sequences may also have utility. Therefore, any MRP6 derived sequence which is employed in a diagnostic assay may be regarded as an appropriate probe or primer. Particularly useful sequences include nucleotide positions from the MRP6 gene for which PXE associated mutations are known, or sequences which flank these positions.
As discussed above, a variety of PXE causing mutations have now been identified at the human MRP6 gene locus. Detection of these and other PXE associated mutations is now enabled using isolated nucleic acid probes or primers derived from normal or mutant MRP6 genes. According to the invention, useful oligonucleotide probes or primers are derived from sequences encoding the C-terminal half of the MRP6 protein, the conserved NBF sequences, and conserved amino acid sequence shown in FIG. 3. Particularly usefull oligonucleotides are derived from sequences known to have PXE associated mutations, such as the sequences including the mutations shown in Table 1. As disclosed above, a number of PXE associated MRP6 mutations have already identified, and it is expected that more will be identified according to the compositions and methods disclosed herein. Therefore, the present invention provides isolated nucleic acid probes and primers corresponding to normal and mutant sequences from any portion of the MRP6 gene, including exons, introns, and 5′ and 3′ UTRs, which may be shown to be associated with the development of PXE.
Merely as an example, and without limiting the invention, useful diagnostic probes and primers derived from the MRP6 DNA are disclosed in Example 5.
For in situ hybridization-based detection of a normal or mutant MRP6, a sample of tissue may be prepared by standard techniques and then contacted with one or more of the nucleic acids described herein, preferably one which is labeled to facilitate detection, and an assay for nucleic acid hybridization is conducted under stringent conditions which permit hybridization only between the probe and highly or perfectly complementary sequences. For the single nucleotide substitutions associated with PXE, high stringency hybridization conditions will be required to distinguish most mutant sequences from normal sequences. When the MRP6 genotypes of an individual's parents are known, probes may be chosen accordingly. Alternatively, probes to a variety of mutants may be employed sequentially or in combination. Because PXE carriers will be heterozygous, probes to normal sequences also may be employed and homozygous normal individuals may be distinguished from mutant heterozygotes by the amount of binding (e.g., by intensity of radioactive signal). In another variation, competitive binding assays may be employed in which both normal and mutant probes are used but only one is labeled.
In addition to oligonucleotide-based hybridization assays, methods of the invention include direct sequencing, loss of heterozygosity, SSCP, HA, and Conformation-Sensitive Gel Electrophoresis (CSGE) to detect a PXE associated MRP6 mutation. As discussed above, preferred mutations to be screened for are those shown in Table 1. However, additional mutations identified according to the invention are also useful as markers of PXE, including deletions in the (MRP6) ABCC6 locus.
According to one embodiment of the invention, a diagnostic test can be a nucleic scanning test where the assay detects the presence of a mutation in the nucleic acid being interogated. In an alternative embodiment, a diagnostic test can interrogate a nucleic acid for the presence of a specific mutation.
According to this invention, base pair deletions or alterations leading to the omission of amino acid residues in the gene product are determined. Nucleic acid primers and probes are used in a variety of PCR-based amplification and hybridization assays to screen for and detect the presence of defective ABCC6 gene or mRNA in a patient. The genetic information derived from the intron/exon boundaries is also very useful in various screening and diagnosis procedures.
Various nucleic acid scanning methods are used for scanning the MRP6 genomic, mRNA or cDNA sequence obtained from a patient for detecting, for example, large deletions and substitutions in the sequence that would be indicative of the disease. These nucleic acid scanning techniques include PCR-based techniques and using oligonucleotide probes that hybridize to specific regions of the gene.
In one embodiment of the invention, preferred mutations for nucleic acid scanning techniques include large deletions in the genomic sequence for the ABCC6 gene for example a 16.5 kb deletion spanning from exon 22 to exon 29. Primers are designed to various regions of the ABCC6 gene which are used for PCR-based detection of large deletions in the gene.
In another embodiment of the invention, primers are designed to the ABCC6 gene that are able to differentiate between the size of the amplified wild-type sequence and sequence containing a specific mutation, for example a deletion.
In a preferred embodiment of the invention, nucleic acid probes are provided which comprise either ribonucleic or deoxyribonucleic acids. Typically, the size of the probes varies from approximately 18 to 22 nucleotides. Functionally, the probe is long enough to bind specifically to the homologous region of the ABCC6 gene, but short enough such that a difference of one nucleotide between the probe and the DNA being tested disrupts hybridization. Thus the nucleic acid probes of the present invention are capable of detecting single nucleotide changes in the ABCC6 gene.
In a preferred embodiment of the invention, nucleic acid probes are 100% homologous to a mutant allele of the ABCC6 gene, but not to the wild-type gene.
In another embodiment of the invention, the nucleic acid probes are 100% homologous to the wild-type allele. Accordingly, the invention provides methods for determining whether an individual is homozygous or heterozygous for a particular allele using both a wild-type and an allele-specific probe.
According to one method of the invention, mutations are detected by sequencing specific regions of the ABCC6 gene. In a preferred embodiment, the specific regions encompass one or more mutations presented in Table 1. In an alternative embodiment, a specific region being interrogated includes one of exons 1-31. Preferred exons include exons 25-29, and more preferably exon 28 in which many PXE associated mutations have been identified.
According to still other methods of the present invention rapid screening techniques are used to determine whether exons of the ABCC6 gene carry any mutations. Such techniques can be followed by one of the techniques already described above which are specific for a particular allele or mutation. One such rapid screening technique involves the determination of the conformation of single strands of DNA which have been amplified from exon sequences that are known to carry mutations, including the mutations presented in Table 1. The single strands are run in non-denaturing electrophoretic gels, such as are typically used for sequencing DNA. The mobility of single stranded DNA on such gels is sensitive to the conformation of the DNA fragments. The conformation of the single stranded DNA is dependent on its base sequence, alterations in even one base affecting the conformation. Thus the presence of a wild-type or mutant allele described herein can be detected by amplifying an exon sequence, denaturing the duplex molecules, and separating them on the basis of their conformation on non-denaturing polyacrylamide gels. If mutant alleles are present, they will have a different mobility than wild-type sequences amplified with the same primers. Most conveniently, the amplified sequences will be radiolabeled to facilitate visualization on gels. This can be readily accomplished using labeled primers or a labeled nucleotide. For a general reference on this technique see Orira, et al., Genomics vol. 5, pp. 874-879 (1989). A preferred nucleic acid amplification product for SSCP analysis is between about 100 and 500 bp, and more preferably between about 140 and 300 bp.
According to another rapid screening technique of the present invention, an amplified fragment containing a mutation is detected using denaturing gradient gel electrophoresis (DGGE). For a general reference on this technique see Sheffield, et al., Proc. Natl. Acad. Sci. vol. 86, pp. 232-236 (1989). Briefly, double stranded fragments which are generated by amplification (PCR) can be subjected to DGGE. “DGGE is a gel system that separates DNA fragments according to their melting properties. When a DNA fragment is electrophoresed through a linearly increasing gradient of denaturants, the fragment remains double stranded until it reaches the concentration of denaturants equivalent to a melting temperature (Tm) that causes the lower-temperature melting domains of the fragment to melt. At this point, the branching of the molecule caused by partial melting sharply decreases the mobility of the fragment in the gel. The lower-temperature melting domains of DNA fragments differing by as little as a single-base substitution will melt at slightly different denaturant concentrations because of differences in stacking interactions between adjacent bases in each DNA strand. These differences in melting cause two DNA fragments to begin slowing down at different levels in the gel, resulting in their separation from each other.” Sheffield, et al., ibid. Use of a GC clamp as taught in Myers et al., Nucleic Acids Res. vol. 13, pp. 3111-3146 (1985) increases the sensitivity of detection of this method from about 40% to about 100%. If mismatches are present, which would be the case if the DNA sample amplified was heterozygous for an ABCC6 allele, they will be visible on these DGGE gels. Double stranded fragments containing one wild-type strand and one mutant strand will have a different mobility on these gels than will double stranded fragments which contain two wild-type or two mutant strands, due to the different melting temperatures of these species. Thus, the melting temperature of fragments amplified from different regions of the ABCC6 gene can be determined by DGGE and can be used to indicate whether a mutant allele is present.
In one embodiment, a region of the (MRP6) ABCC6 gene that encodes an important functional domain of the (MRP6) ABCC6 protein is screened for the presence of any mutation. For example, a preferred diagnostic assay interrogates the region of the (MRP6) ABCC6 gene that encodes an ATP binding site of the (MRP6) ABCC6 protein, a region that encodes a hydrophobic transmembrane domain, or a region that encodes a conserved amino acid, preferably in the C-terminal half of the MRP6 protein.
One major application of the nucleic acid based diagnostics is in the area of genetic testing, carrier detection and prenatal diagnosis. Individuals carrying mutations in the ABCC6 gene (disease carrier or patients) may be detected at the DNA level with the use of a variety of techniques. The genomic DNA used for the diagnosis may be used directly for detecting specific sequences or may be amplified enzymatically in vitro, for example by PCR. The detection of specific DNA sequence may be achieved by methods such as hybridization using specific oligonucleotides (Wallace et al. Cold Spring Harbour Symp. Quant. Biol. 51: 257-261 (1986)), direct DNA sequencing (Church and Gilbert, Proc. Nat. Acad. Sci. U. S. A. 81: 1991-1995 (1988)), the use of restriction enzymes (Flavell et al. Cell 15: 25 (1978), Geever et al Proc. Nat. Acad. Sci. U. S. A. 78: 5081 (1981)), discrimination on the basis of electrophoretic mobility in gels with denaturing reagent (Myers and Maniatis, Cold Spring Harbour Sym. Quant. Biol. 51: 275-284 (1986)), RNase protection (Myers, R. M., Larin, J., and T. Maniatis Science 230: 1242 (1985)), chemical cleavage (Cotton et al Proc. Nat. Acad. Sci. U. S. A. 85: 4397-4401, (1985)) and the ligase-mediated detection procedure (Landegren et al Science 241:1077 (1988)).
Oligonucleotides specific to normal or mutant sequences are chemically synthesized using commercially available machines, labelled radioactively with isotopes or non-radioactively (with tags such as biotin (Ward and Langer et al. Proc. Nat. Acad. Sci. U. S. A. 78: 6633-6657 (1981)), and hybridized to individual DNA samples immobilized on membranes or other solid supports by dot-blot or transfer from gels after electrophoresis. The presence or absence of these specific sequences are visualized by methods such as autoradiography or fluorometric (Landegren et al, 1989) or colorimetric reactions (Gebeyshu et al. Nucleic Acids Research 15: 4513-4534 (1987)).
Sequence differences between normal and mutants may be revealed by the direct DNA sequencing method of Church and Gilbert. Cloned DNA segments may be used as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR (Wrichnik et al, Nucleic Acids Res. 15:529-542 (1987); Wong et al, Nature 330:384-386 (1987); Stoflet et al, Science 239:491-494 (1988)). In the latter procedure, a sequencing primer which lies within the amplified sequence is used with double-stranded PCR product or single-stranded template generated by a modified PCR. The sequence determination is performed by conventional procedures with radiolabeled nucleotides or by automatic sequencing procedures with fluorescent-tags.
Genetic testing based on DNA sequence differences may be achieved by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing reagent. Small sequence deletions and insertions can be visualized by high resolution gel electrophoresis. For example, a PCR product with a small deletion is clearly distinguishable from the normal sequence on an 8% non-denaturing polyacrylamide gel. DNA fragments of different sequence compositions may be distinguished on denaturing formamide gradient gel in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific “partial-melting” temperature (Myers, supra). In addition, sequence alterations, in particular small deletions, may be detected as changes in the migration pattern of DNA heteroduplexes in non-denaturing gel electrophoresis, as have been detected for the 3 dp (1507) mutation and in other experimental systems (Nagamine et al, Am. J. Hum. Genet, 45:337-339 (1989)). Alternatively, a method of detecting a mutation comprising a single base substitution or other small change could be based on differential primer length in a PCR. For example, one invariant primer could be used in addition to a primer specific for a mutation. The PCR products of the normal and mutant genes can then be differentially detected in acrylamide gels.
Sequence alterations may occasionally generate fortuitous restriction enzyme recognition sites which are revealed by the use of appropriate enzyme digestion followed by conventional gel-blot hybridization (Southern, J. Mol. Biol 98: 503 (1975)). DNA fragments carrying the site (either normal or mutant) are detected by their reduction in size or increase of corresponding restriction fragment numbers. Genomic DNA samples may also be amplified by PCR prior to treatment with the appropriate restriction enzyme; fragments of different sizes are then visualized under UV light in the presence of ethidium bromide after gel electrophoresis.
In another embodiment of the invention, sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase (Myers, supra) and S1 protection (Berk, A. J., and P. A. Sharpe Proc. Nat. Acad. Sci. U. S. A. 75: 1274 (1978)), the chemical cleavage method (Cotton, supra) or the ligase-mediated detection procedure (Landegren supra).
In addition to conventional gel-electrophoresis and blot-hybridization methods, DNA fragments may also be visualized by methods where the individual DNA samples are not immobilized on membranes. The probe and target sequences may be both in solution or the probe sequence may be immobilized (Saiki et al, Proc. Natl. Acad. Sci USA, 86:6230-6234 (1989)). A variety of detection methods, such as autoradiography involving radioisotopes, direct detection of radioactive decay (in the presence or absence of scintillant), spectrophotometry involving colorigenic reactions and fluorometry involving fluorogenic reactions, may be used to identify specific individual genotypes.
In a preferred embodiment of the invention, for example, a PCR with multiple, specific oligonucleotide primers and hybridization probes, may be used to identify a plurality of possible mutations at the same time (Chamberlain et al. Nucleic Acids Research 16: 1141-1155 (1988)). The procedure may involve immobilized sequence-specific oligonucleotides probes (Saiki et al, supra).
According to the invention, assays are performed to detect a deletion within or including the MRP6 gene using Southern hybridization, FISH analysis, or diagnostic PCR. It is expected that most deletions will occur between repetitive Alu sequences that are common within the introns of the MRP6 gene. Preferred PCR primers for detecting these deletions are primers that flank intron Alu sequences.
According to one aspect of the invention, many of the PXE associated MRP6 mutations are found in exons 22-30. Accordingly, preferred assays of the invention interrogate any one of exons 22-30, taken alone or in combination, for the presence of a PXE associated MRP6 mutation.
In a preferred embodiment of the invention, a diagnostic assay interrogates the entire (MRP6) ABCC6 locus for the presence of a mutation, using for example SSCP, HA, or CSGE, and direct sequencing. In a more preferred embodiment, an assay interrogates a portion of the ABCC6 locus for the presence of a mutation. If a mutation is detected, it is first compared to known mutations associated with PXE (Table 1) and known neutral polymorphisms (Table 2) that are not associated with PXE. If the mutation has not yet been observed as either a PXE associated mutation or as a neutral polymorphism, the nature of the mutation is considered. If the mutation is a deletion, nonsense, frameshift or other mutation that affects expression of a normal MRP6 protein, the mutation is considered to be a PXE mutation. Similarly, if the mutation results in a nonconservative amino acid change or an amino acid change in a conserved sequence such as an NBF, a transmembrane sequence, or a change in a conserved amino acid shown in FIG. 3, the mutation is considered to be a PXE mutation. In addition, if the mutation results in low levels of MRP6 expression, the mutation is considered to be a PXE mutation. However, if the mutation results in a conservative amino acid change in a non-conserved part of the MRP6 protein the mutation is considered to be a neutral polymorphism. Nonetheless, a patient identified with a previously unknown neutral polymorphism according to this analysis should be subjected to additional diagnostic tests to look for known PXE associated symptoms or subclinical symptoms.
According to one aspect of the invention, the detection of PXE carriers and PXE patients is determined through the identification of mutant MRP6 alleles in DNA from patients, family members and apparently unrelated and normal individuals. A single allele, with no evidence of a second mutant allele and the presence of a normal allele will be considered a carrier. Patients may be identified as either compound heterozygotes (having two different mutant alleles) or homozygotes (two identical mutant alleles).
b) Protein Based Diagnostics
Different approaches to a MRP6 protein-based diagnostic assay can be used to detect the presence of a PXE related mutation in a patient. Preferred assays include detecting a mutant electrophoretic mobility, the presence of a mutant epitope, the absence of a normal epitope, or by identifying altered biological activity, for example altered ATP binding or altered transport of a synthetic, preferably radiolabeled molecule.
In one embodiment, diagnosis can be achieved by monitoring differences in the electrophoretic mobility of normal and mutant proteins. Such an approach will be particularly useful in identifying mutants in which charge substitutions are present, or in which insertions, deletions or substitutions have resulted in a significant change in the electrophoretic migration of the resultant protein. Alternatively, diagnosis may be based upon differences in the proteolytic cleavage patterns of normal and mutant proteins, differences in molar ratios of the various amino acid residues, or by functional assays demonstrating altered function of the gene products.
In preferred embodiments, protein-based diagnostics will employ differences in the ability of antibodies to bind to normal and mutant MRP6 proteins. Such diagnostic tests may employ antibodies which bind to the normal proteins but not to mutant proteins, or vice versa. In particular, an assay in which a plurality of monoclonal antibodies, each capable of binding to a mutant epitope, may be employed. The levels of anti-mutant antibody binding in a sample obtained from a test subject (visualized by, for example, radiolabelling, ELISA or chemiluminescence) may be compared to the levels of binding to a control sample. Alternatively, antibodies which bind to normal but not to mutant MRP6 protein may be employed, and decreases in the level of antibody binding may be used to distinguish homozygous normal individuals from mutant heterozygotes or homozygotes. Such antibody diagnostics may be used for in situ immunohistochemistry using biopsy samples of tissues obtained from patients.
c) Genetic Counseling
According to one embodiment of the invention, genetic counseling is provided to an individual identified as a PXE carrier, a PXE homozygote, or a PXE compound heterozygote (an individual with two different PXE mutant alleles). According to the invention, individuals carrying two PXE mutant alleles are provided information about ameliorating treatments for some of the symptoms of PXE. For example, a person who inherits PXE recessively is cautioned with regard to diet and activity. A low fat, high fibre, heart healthy diet is critical for maintaining cardiovascular health. Regular exercise appears to alleviate some of the symptoms of peripheral vascular disease. Medications to allow the passage of blood through narrowed arteries may be recommended. Individuals exhibiting eye manifestations should not engage in activities that put them at risk for injury to the eye that could subsequently lead to hemorrhage and vision loss. Smoking should be avoided at all costs since it appears to increase the rate and severity of eye disease. In one embodiment of the invention, a patient identified as being a carrier of a PXE associated mutation or as being a homozygote or a compound heterozygote for PXE associated mutations should be advised to reduce calcium intake or to use drugs that reduce calcium intake in order to reduce the severity of the phenotype.
III. Therapeutic Applications
The present invention provides a basis for therapeutic treatments of PXE related symptoms caused by mutations at the (MRP6) ABCC6 locus. According to the invention, normal (MRP6) ABCC6 nucleic acid or protein is provided to cells and/or a patient having a PXE associated mutation at the (MRP6) ABCC6 locus.
Preferred target tissues include the kidney and liver, but also other tissues where low levels of MRP6 expression have been observed, such as smooth muscle cells and macrophages. Preferred target tissues also include tissues or cells that exhibit PXE related symptoms, such as a blood vessel, the gastrointestinal tract, occular tissue, the urinary tract, and skin.
a) Nucleic Acid-based Therapeutics
According to the invention, PXE or PXE associated symptoms can be prevented or treated by providing a normal PXE gene or cDNA to a patient that is diagnosed as having on or more PXE associated mutations at the (MRP6) ABCC6 locus. The fact that PXE is a recessive disease makes it particularly amenable to gene therapy, because it is expected that most, if not all, PXE associated MRP6 mutations reduce the amount of functional MRP6 protein in a cell and can be compensated for by providing normal MRP6 to the cell.
In one series of embodiments, normal copies of the MRP6 gene are introduced into patients to code successfully for normal protein in one or more different affected cell types. The gene must be delivered to those cells in a form in which it can be taken up and code for sufficient protein to provide effective function. Thus, it is preferred that the recombinant gene be operably joined to a strong promoter so as to provide a high level of expression which will compensate for the absence of sufficient amounts of normal MRP6. As noted above, the recombinant construct may contain endogenous or exogenous regulatory elements, inducible or repressible regulatory elements, or tissue-specific regulatory elements.
Preferred vectors for introducing an MRP6 gene to a cell or a patient include retroviral vectors, because of their high efficiency of infection and stable integration and expression. Other viral vectors which can be used include adeno-associated virus, vaccinia virus, bovine papilloma virus, or a herpes virus such as Epstein-Barr virus. Alternative vectors include plasmids that are replicated in human cells.
In another series of embodiments, a mutant MRP6 gene may be replaced by homologous recombination with a recombinant construct. The recombinant construct preferably contains a normal copy of the MRP6 gene. Alternatively, a regulatory region of a normal MRP6 gene in a PXE carrier may be altered to increase expression of normal MRP6.
i) Wild Type Genes
In one series of embodiments, a normal human (MRP6) ABCC6 gene is introduced to cells or a patient. A normal (MRP6) ABCC6 gene includes a gene with one or more polymorphic variations that are not associated with PXE. In one embodiment, an MRP6 genomic sequence is used. In an alternative embodiment an MRP6 cDNA sequence is used.
ii) Related Genes
In an alternative series of embodiments, an (MRP6) ABCC6 related gene is provided to a cell or tissue having a PXE associated mutation. According to the invention, an (MRP6) ABCC6 related gene encodes a protein that has similar functional properties as a normal human MRP6 protein and can compensate for the absence of sufficient amounts of normal human MRP6 protein in a patient cell or tissue. Preferably, an (MRP6) ABCC6 homologue from another mammalian species is used. For example the mouse or rat MRP6 genes or cDNAs could be used. In one embodiment of the invention, a homologue from a non-mammalian species is used. Alternatively, a nucleic acid encoding a different ABC protein is used, for example an MRP1 encoding nucleic acid.
The present invention also provides for cells or cell lines, both prokaryotic and eukaryotic, which have been transformed or transfected with the nucleic acids of the present invention so as to cause clonal propagation of those nucleic acids and/or expression of the proteins or peptides encoded thereby. Such cells or cell lines will have utility both in the propagation and production of the nucleic acids and proteins of the present invention but also, as further described herein, as model systems for diagnostic and therapeutic assays. As used herein, the term “transformed cell” is intended to embrace any cell, or the descendant of any cell, into which has been introduced any of the nucleic acids of the invention, whether by transformation, transfection, infection, or other means. Methods of producing appropriate vectors, transforming cells with those vectors, and identifying transformants are well known in the art.
b) Protein Based Therapeutics
Treatment of PXE symptoms may be performed by directly providing normal protein to a patient cell or tissue. Sufficient amounts of substantially pure MRP6 protein can be obtained from cultured cell systems which express the protein. Delivery of the protein to the affected tissue can then be accomplished using appropriate packaging or administrating systems including, for example, liposome mediated protein delivery to the target cells.
c) Drug Therapies
In one embodiment of the invention, a drug identified according to methods of the invention is administered to a patient diagnosed with PXE or a PXE carrier with PXE related symptoms. Alternatively, a drug is administered to prevent or minimize the development of PXE or PXE associated symptoms in individuals identified as having one or more PXE mutations at the ABCC6 locus.
IV. Drug Discovery Applications
The present invention provides a basis for screening drug candidates to identify useful therapeutic compositions to treat or alleviate the symptoms of PXE. In a series of embodiments, the invention provides screens based on MRP6 activity. As used with respect to this series of embodiments, the term “activity” broadly includes gene and protein expression, protein post-translation processing, trafficking and localization, and any functional activity (e.g., enzymatic, receptor-effector, binding, channel), as well as downstream effects of any of these. MRP6 appears to be an integral membrane protein and may have transport related functions, and it also has ATP binding cassettes. Accordingly, these functional properties can be used as a basis for a screen to identify compounds that increase MRP6 function.
In one embodiment, a drug candidate is screened for its ability to increase expression of the MRP6 gene. A preferred screen monitors the level of normal MRP6 mRNA in cells grown in culture in the presence and absence of the candidate compound. Alternatively, normal MRP6 protein levels are monitored. Useful cells for these assays are preferably normal cells or PXE carrier cells. However, a PXE cell can also be used and the levels of mutant MRP6 expression can also be monitored. A compound that increases the level of MRP6 expression is particularly useful to treat a PXE carrier in order to increase the level of MRP6 expressed from the normal allele. However, a compound that increases the level of MRP6 expression can also be useful to treat a PXE homozygote or compound heterozygote if the PXE associated MRP6 allele(s) encodes an MRP6 protein that retains some normal MRP6 function or if the allele is a mutation that reduces the level of normal MRP6 function.
Other assays are useful for screening candidate compounds to identify a compound that increases normal MRP6 function. In one embodiment, an assay screens a compound for the ability to restore normal phenotype to dermal fibroblasts isolated from a PXE patient. Dermal fibroblasts isolated from patients with PXE exhibit abnormal phenotype when grown in vitro (Quaglino et al., Biochimica et Biophysica Acta 1501 (2000) 51-62). These phenotypes include an increased proliferation index compared to normal fibroblasts when grown in monolayer. PXE fibroblasts also have lower adhesion properties to collagen type I and to plasma fibronectin when compared to normal fibroblasts. Accordingly, these phenotypes provide a basis for an assay to identify a compound that restores normal MRP6 function to dermal fibroblasts isolated from a patient that was identified as having a PXE associated MRP6 mutation.
In another embodiment of the invention, an assay is used to screen candidate compounds for their ability to increase the ATPase activity of an MRP6 proteins. In a preferred embodiment, the assay monitors the ATPase activity of an MRP6 protein encoded by an MRP6 gene with a PXE associated mutation in the presence and absence of the candidate compound. ATPase activity of purified MRP6 can be assayed according to methods known in the art (see, for example, Mao et al., Biochimica et Biophysica Acta 1461, 69-82 (1999). According to the invention, a compound that increases the ATPase activity of a PXE associated MRP6 protein variant is useful to treat a patient that is heterozygous or homozygous for the PXE allele that encodes the protein variant used in the assay.
In a similar embodiment of the invention, an assay is used to screen candidate compounds for their ability to increase the transport activities of an MRP6 protein, in particular a PXE associated MRP6 protein variant. A useful transport assay is provided in Oude et al., Biochim Biophys Acta, 1241(2), 215-68, 1995. A compound identified according to this screen is useful to treat PXE patients and PXE carriers as described above.
V. Disease Models
The invention provides a basis for designing cellular and animal models of PXE. Such models are useful to study the development of the PXE disease in PXE homozygotes and compound heterozygotes and to identify potential PXE associated physiological dysfunctions in PXE carriers. Such models are also useful in screens to identify therapeutic compounds to prevent or treat PXE symptoms.
a) Cellular Models
According to the invention, cellular models can be made by deleting one or both MRP6 alleles, or by introducing one or more PXE associated MRP6 alleles into a cell line grown in vitro, using methods known in the art. Preferred cell lines include renal and hepatic cell lines. Other useful cell lines include those derived from skin (keratinocytes and fibroblasts) and ocular tissue (ganglioma cells).
b) Animal Models
The present invention also provides for the production of transgenic non-human animal models for the study of PXE, for the screening of candidate pharmaceutical compounds, and for the evaluation of potential therapeutic interventions.
Animal species which suitable for use in the animal models of the present invention include, but are not limited to, rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, goats, sheep, pigs, and non-human primates (e.g., Rhesus monkeys, chimpanzees). For initial studies, transgenic rodents (e.g., mice) are preferred due to their relative ease of maintenance and shorter life spans. Transgenic yeast or invertebrates (e.g., nematodes, insects) may be preferred for some studies because they will allow for even more rapid and inexpensive screening. Transgenic non-human primates, however, may be preferred for longer term studies due to their greater similarity to humans.
Based on the identification of MRP6 as the gene associated with PXE, there are now several available approaches for the creation of a transgenic animal models for PXE, including animal models with one or both MRP6 alleles deleted and animal models with one or two MRP6 alleles with mutations similar to known PXE associated human MRP6 mutations.
To create an animal model (e.g., a transgenic mouse), a mutant MRP6 gene can be inserted into a germ line or stem cell using standard techniques of oocyte microinjection, or transfection or microinjection into embryonic stem cells. Animals produced by these or similar processes are referred to as transgenic. If the mutation knocks out the MRP6 gene or a portion thereof, the animals are referred to as knockouts.
For oocyte injection, one or more copies of the recombinant DNA constructs of the present invention may be inserted into the pronucleus of a just-fertilized oocyte. This oocyte is then reimplanted into a pseudo-pregnant foster mother. The liveborn animals are screened for integrants using analysis of DNA (e.g., from the tail veins of offspring mice) for the presence of the inserted recombinant transgene sequences. The transgene may be either a complete genomic sequence injected as a YAC, BAC, PAC or other chromosome DNA fragment, a cDNA with either the natural promoter or a heterologous promoter, or a minigene containing all of the coding region and other elements found to be necessary for optimum expression.
Retroviral infection of early embryos can also be done to insert the recombinant DNA constructs of the invention. In this method, the transgene is inserted into a retroviral vector which is used to infect embryos (e.g., mouse or non-human primate embryos) directly during the early stages of development to generate chimeras, some of which will lead to germline transmission.
Homologous recombination using stem cells allows for the screening of gene transfer cells to identify the rare homologous recombination events. Once identified, these can be used to generate chimeras by injection of blastocysts, and a proportion of the resulting animals will show germline transmission from the recombinant line. In a preferred embodiment, inactivation of the MRP6 gene in mice may be accomplished by designing a DNA fragment which contains sequences from an MRP6 exon flanking a selectable marker. Homologous recombination leads to the insertion of the marker sequences in the middle of an exon, causing inactivation of the MRP6 gene and/or deletion of internal sequences. DNA analysis of individual clones can then be used to recognize the homologous recombination events.
The techniques of generating transgenic animals, as well as the techniques for homologous recombination or gene targeting, are now widely accepted and practiced. A laboratory manual on the manipulation of the mouse embryo, for example, is available detailing standard laboratory techniques for the production of transgenic mice (Hogan et al., 1986). A large number vectors are available to accomplish this and appropriate sources of genomic DNA for mouse and other animal genomes to be targeted are commercially available from companies such as GenomeSystems Inc. (St. Louis, Mo., USA). The typical feature of these targeting vector constructs is that 2 to 4 kb of genomic DNA is ligated 5′ to a selectable marker (e.g., a bacterial neomycin resistance gene under its own promoter element termed a “neomycin cassette”). A second DNA fragment from the gene of interest is then ligated downstream of the neomycin cassette but upstream of a second selectable marker (e.g., thymidine kinase). The DNA fragments are chosen such that mutant sequences can be introduced into the germ line of the targeted animal by homologous replacement of the endogenous sequences by either one of the sequences included in the vector. Alternatively, the sequences can be chosen to cause deletion of sequences that would normally reside between the left and right arms of the vector surrounding the neomycin cassette. The former is known as a knock-in, the latter is known as a knock-out. Example 5 describes a knockout of most of exons 28 and 29 in mouse MRP6.
VI. (MRP6) ABCC6 Interacting Molecules
According to the invention, molecules that interact with a normal MRP6 gene product gene product provide candidates 1) for identifying additional types of mutations that result in a PXE phenotype and 2) for additional levels of therapeutic intervention to overcome or minimize the effect of a mutant PXE gene product. For example, the identification of a protein that interacts with a normal MRP6 protein but not with a PXE mutant protein provides a potential target for therapeutic intervention if the function of the interacting protein can be modified to compensate for the absence of normal MRP6 protein.
According to the invention, (MRP6) ABCC6 interacting molecules can be identified according to a number of biochemical and genetic methods known in the art, including affinity chromatography, mutational analysis, and yeast two hybrid analysis. As will be obvious to one of ordinary skill in the art, there are numerous other methods of screening individual proteins or other compounds, as well as large libraries of proteins or other compounds (e.g., phage display libraries and cloning systems from Stratagene, La Jolla, Calif.) to identify molecules which bind to normal or mutant MRP6 proteins. All of these methods comprise the step of mixing a normal or mutant MRP6 protein or protein fragment with test compounds, allowing for binding (if any), and assaying for bound complexes.
The invention is further illustrated by the following non-limiting examples. de
EXAMPLESExample 1
Materials and Methods
a) Sources of Patient Samples
PXE International, Inc.
To date, PXE International has assembled a database of over 2100 PXE patients from 1400 families from 31 countries including North America, several European and South American countries and South Africa. From this cohort of patients and family members, genomic DNA has been prepared from whole blood samples obtained from over 1200 PXE patients and family members.
Honolulu Heart Program
In the early 1950's, studies around the world were reporting geographic differences in coronary heart disease (CHD) mortality, pathology, prevalence, and incidence. Among these reports were those of significant differences in the CHD and cerebrovascular disease rates in Japan and in the United States. The overall mortality for men in Japan and in the United States was similar, but the rates for CHD were strikingly different. Reported CHD mortality among Japanese was approximately twenty percent of that among U.S. Caucasians. At about the same time, Japanese living in Hawaii and California were reported to have a lower overall mortality than either U.S. Caucasians or Japanese living in Japan. The reasons for these differences were not apparent. However, it was felt that the study of these populations might offer important clues to the etiology of heart and vascular disease. The compared populations, living in Japan, Hawaii and California were of Japanese ancestry to limit genetic variation between study groups. The Honolulu cohort of the Ni-Hon-San (Nippon-Honolulu, San Francisco) study formed the basis for the Honolulu Heart Program (HHP). That study has now been underway for 35 years, providing extensive information about the role of lifestyle, diet, and other risk factors to development of chronic diseases of major public health importance in 8,000 Japanese-American men.
Although several studies have suggested that PXE is more frequent in females there is no evidence that the observed gender difference is caused by genetic factors. Indeed, men would often report skin lesions, usually the first signs of PXE, later in life, than women. Therefore, a study of an exclusively male cohort from the HHP should not compromise the general applicability of the conclusions. PXE has also no particular predilection for any ethnic or racial group. PXE has indeed largely been described in Caucasians but also in African and Asian populations. PXE cases reported in Japan have shown no phenotypic or prevalence differences when compared to those observed in Caucasian populations.
Unaffected Control Subjects
DNA has been prepared from 150 unrelated individuals with no evidence of PXE. These samples have been aliquoted and are currently stored at −80° C. They are routinely used as control DNA samples and will be used to confirm that any new and potential mutation detected in a PXE patient or relative is indeed a mutation and not a neutral polymorphism. The donors of these DNA samples were adults of either sex from various ethnic backgrounds.
b) Mutation Detection Methods
Detection of Single Nucleotide Mutations
Single strand conformation polymorphism (SSCP) analysis is based on the observation that single stranded DNA will adopt, in non-denaturing conditions, a secondary structure that is strictly sequence-dependant. Slight variations in sequence, such as a single nucleotide change can alter the conformation of a DNA fragment, which can be resolved on a non-denaturing polyacrylamide gel. Heteroduplex analysis (HA) is based on the observation that heteroduplexes formed between two DNA strands with one or more mismatches have electrophoretical mobility distinctly different from homoduplexes. While both methods (SSCP and HA) can detect point mutations, some sequence variants are more readily detected by one procedure than the other. Accordingly, a preferred screening method, uses a combination of SSCP and modified HA called Conformation-Sensitive Gel Electrophoresis or CSGE.
In a preferred assay, each characterized PCR primer pair is radioactively labeled using T4 polynucleotide kinase and &ggr;-[P32]-ATP. For SSCP analysis, radiolabeled PCR products are mixed with denaturing loading buffer and loaded onto a 0.5×MDE (MDE is a mutation detection enhancement polyacrylamide-derived matrix provided by FMC products), 0.6×TBE native polyacrylamide gel and electrophoresed overnight at 8 watts in a sequencing gel apparatus. Separated, radiolabeled conformers are visualized by autoradiography. For CSGE, EDTA is added to the incubated PCR reaction mix to a final concentration of 1 mM and the reaction will be heat-denatured and incubated for 60 minutes at 68° C. to allow heteroduplex formation. Heteroduplex products are analyzed on a 6% polyacrylamide gel (29:1 ratio of acrylamide/bisacrylamide), 10% (v/v) ethylene glycol and 15% (w/v) formamide in 0.5×TTE buffer (1×TTE is 89 mM Tris, 15 mM taurine, 0.5 mM EDTA, pH 9.0). A solution of 20% (v/v) ethylene glycol, 30% (w/v) formamide and 0.05% xylene cyanol and bromophenol blue is mixed equally with the samples. The gel is run at 35 to 45 watts for 2 to 4 hours at room temperature. As for SSCP, CSGE conformers are revealed by autoradiography.
When an abnormal conformer or heteroduplex is detected, the segregation of the variant is analyzed for DNA samples from the entire family. Subsequently, the DNA sequence of the variant is determined by eluting normal and altered DNA conformers directly from the electrophoresis gel. These PCR fragments are eluted in water, re-amplified and directly used as a template for sequencing using an ABI 310 automated sequencer (Perking Elmer). A panel of 150 DNA samples of normal unrelated individuals is used to identify abnormal variants that are common polymorphisms in the ABCC6 locus.
Mutation Detection by Enzymatic Cleavage
Single nucleotide substitutions often modify the recognition site of a restriction enzyme. Polymorphisms and mutations can, therefore, be detected in a rapid and convenient manner by the enzymatic cleavage of a PCR fragment containing the nucleotide change. This method is frequently employed to verify the presence of previously characterized mutations or polymorphisms in DNA samples for control, study or diagnostic purposes. It can also be used for screening a large number of samples. Out of the ABCC6 mutations listed in Table 1, 10 mutations were identified with a unique restriction pattern. For example, three possible HhaI restriction profiles for one of these mutations, R1339C (4015C to T) can be visualized by electrophoresis. According to the invention, single nucleotide mutations in ABCC6 are detectable by enzymatic cleavage. Accordingly, this method is useful as an initial step to appropriately complement the screening of large cohorts with more traditional mutations detection techniques.
PCR Mapping
A single base substitution mutation may be detected based on differential PCR product length or production in PCR. Thus, primers which span mutant sites or which, preferably, have 3′ termini at mutation sites, may be employed to amplify a sample of genomic DNA, mRNA or cDNA from a subject. A mismatch at a mutational site may be expected to alter the ability of the normal or mutant primers to promote the polymerase reaction and, thereby, result in product profiles which differ between normal subjects and heterozygous and/or homozygous MRP6 mutants. The PCR products of the normal and mutant gene may be differentially separated and detected by standard techniques, such as polyacrylamide or agarose gel electrophoresis and visualization with labeled probes, ethidium bromide or the like. Because of possible non-specific priming or readthrough of mutation sites, as well as the fact that most carriers of mutant alleles will be heterozygous, the power of this technique may be low.
Electrophoretic Mobility
Genetic testing based on DNA sequence differences also may be achieved by detection of alterations in electrophoretic mobility of DNA, mRNA or cDNA fragments in gels. Small sequence deletions and insertions, for example, can be visualized by high resolution gel electrophoresis of single or double stranded DNA, or as changes in the migration pattern of DNA heteroduplexes in non-denaturing gel electrophoresis. MRP6 mutations or polymorphisms may also be detected by methods which exploit mobility shifts due to single-stranded conformational polymorphisms (SSCP) associated with mRNA or single-stranded DNA secondary structures.
Chemical Cleavage of Mismatches
Mutations in MRP6 may also be detected by employing the chemical cleavage of mismatch (CCM) method. In this technique, probes (up to ˜1 kb) may be mixed with a sample of genomic DNA, cDNA or mRNA obtained from a subject. The sample and probes are mixed and subjected to conditions which allow for heteroduplex formation (if any). Preferably, both the probe and sample nucleic acids are double-stranded, or the probe and sample may be PCR amplified together, to ensure creation of all possible mismatch heteroduplexes. Mismatched T residues are reactive to osmium tetroxide and mismatched C residues are reactive to hydroxylamine. Because each mismatched A will be accompanied by a mismatched T, and each mismatched G will be accompanied by a mismatched C, any nucleotide differences between the probe and sample (including small insertions or deletions) will lead to the formation of at least one reactive heteroduplex. After treatment with osmium tetroxide and/or hydroxylamine to modify any mismatch sites, the mixture is subjected to chemical cleavage at any modified mismatch sites by, for example, reaction with piperidine. The mixture may then be analyzed by standard techniques such as gel electrophoresis to detect cleavage products which would indicate mismatches between the probe and sample.
Other Methods
Various other methods of detecting MRP6 mutations, based upon the MRP6 sequences disclosed and otherwise enabled herein, will be apparent to those of ordinary skill in the art. Any of these may be employed in accordance with the present invention. These include, but are not limited to, nuclease protection assays (S1 or ligase-mediated), ligated PCR, denaturing gradient gel electrophoresis (DGGE), restriction endonuclease fingerprinting combined with SSCP (REF-SSCP), and the like.
Methods for Analyzing MRP6 mRNA Levels
The steady state levels of (MRP6) ABCC6 mRNA was analyzed in skin fibroblasts from a PXE patient carrying a homozygous R1141X mutation. Total skin fibroblast RNA from an unaffected control individual and a PXE patient was used to synthesize single stranded cDNA using oligo(dT). PCR primers derived from (MRP6) ABCC6 mRNA sequence were then used in two consecutive rounds of 25 cycles of PCR. Poly(A)+ RNA from normal human kidney (obtained from Clontech) was used as a positive control for detection of (MRP6) ABCC6 mRNA. MRP-1 mRNA was detected in the same cDNA samples used for ABCC6 mRNA with 30 cycles of PCR. The 390 bp and 180 bp DNA fragments detected correspond to the expected size of (MRP6) ABCC6 and MRP-1 mRNA domains encoded within exons 6-9 and 2-3 of the (MRP6) ABCC6 and MRP-1 genes respectively. No reverse transcriptase (No RT) controls were included to confirm that no PCR products were obtained in the absence of cDNA synthesis.
Stringent Hybridization Conditions
High stringency conditions are at least equivalent to a temperature in the range of about 40-70 degrees C., and between about 0.05 and 0.5 M sodium ion. High stringency hybridization conditions are well known in the art and can be optimized for a specific oligonucleotide based on the length and GC content of the oligonucleotide as described in, for example, Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor, N.Y., 1982).
An oligonucleotide selected for hybridizing to the target nucleic acid, whether synthesized chemically or by recombinant DNA methodologies, is isolated and purified using standard techniques and then preferably labeled (e.g., with 35S or 32P) using standard labeling protocols. A sample containing the target nucleic acid then is run on an electrophoresis gel, the dispersed nucleic acids transferred to a nitrocellulose filter and the labeled oligonucleotide exposed to the filter under stringent hybridizing conditions, e.g. 50% formamide, 5×SSPE, 2×Denhardt's solution, 0.1% SDS at 420° C., as described in Sambrook et al. (1989) supra. The filter may then be washed using 2×SSPE, 0.1% SDS at 68° C., and more preferably using 0.1×SSPE, 0.1% SDS at 68° C. Other useful procedures known in the art include solution hybridization, and dot and slot RNA hybridization. Optionally, the amount of the target nucleic acid present in a sample is then quantitated by measuring the radioactivity of hybridized fragments, using standard procedures known in the art.
Example 2
The Positional Cloning of the PXE Gene
Blood samples and skin biopsies from PXE patients and unaffected relatives in the United States were collected by PXE International Inc., by Dr. Ivonne Pasquali-Ronchetti in Italy, by Dr. F. Michael Pope in the United Kingdom and by Dr. Anne de Paepe in Belgium. Blood samples were obtained from 100 Caucasian control individuals with no family history of PXE. Genomic DNA was isolated from aliquots of blood. Low passage and confluent skin fibroblasts were obtained from 3 mm full thickness skin biopsies using known procedures.
To identify the gene that contains mutations responsible for PXE, the disease locus was confined to a region of about 8 cM between markers D16S500 and- D16S3041. Recombination mapping reduced this large critical region to an 820 kb domain containing six candidate genes. These genes encode an isoform of Myosin Heavy Chain (MYH11), two Multidrug Resistance-associated Proteins (MRP-1 and (MRP6) ABCC6), an unknown protein called pM5 and two identical unknown proteins referred to as UNK. Using a polymorphic microsatellite repeat (GAAA17) located at the 5′ end of the MRP-1 gene (FIG. 1) an informative meiotic recombination in one PXE patient was identified and this permitted the exclusion of the MYH11 as a candidate gene and reduced the size of the PXE region to 570 kb and 5 candidate genes. FIG. 1 shows the previously defined PXE locus covering 820 kb between markers D16S3060 and D16S79 at 16p13.1. The BAC contig that covers this region is shown along with the identity of the BACs. FIG. 1b shows the gene content of the PXE locus represented from the telomere (left) to the centromere (right). The transcriptional orientation of the genes is indicated by arrows. A flag represents the position of a polymorphic marker (GAAA17) used to identify an additional meiotic recombination in one PXE patient that excluded the MYH11 gene as the PXE gene.
The 109 exons within the five candidate genes were then screened for mutations by Single-Strand Conformation Polymorphism (SSCP) and Heteroduplex Analysis (HA) using genomic DNA from a cohort of 20 unrelated PXE patients.
Mutation detection, sequence analysis and RT-PCR, SSCP, and Heteroduplex Analysis (HA) were carried out as previously described. Intron-derived primers for PCR amplification of exons present in the genes encoding MRP-1, (MRP6) ABCC6, pM5 and both UNK gene were synthesized using intron sequences available in the TIGR database (http://www.tigr.org). PCR products were typically 150-350 bp in length and included complete intron/exon boundaries. Typical PCR reactions, were performed in the presence of 32P-labelled primers in a 9700 thermocycler (Perkin Elmer). Radioactive PCR products were analyzed either by SSCP or HA using MDE polyacrylamide gel (FMC) according to the manufacturer's instructions. DNA conformers were eluted in water from gel slices, re-amplified and sequenced utilizing the same primers used to generate these PCR products. DNA sequence analysis was performed using ABI BigDye terminator cycle sequencing with an ABI310 automated DNA sequencer. The sequence information generated by the sequencer was analyzed using the ABI software. The Sequencher™ 3.1 program was used to identify variation between the sequence of putative mutations and control sequences. RT-PCR was performed on total RNA from cultured human skin fibroblasts and human kidney poly(A)+ RNA. The sequences of the PCR primers used are: (MRP6)ABCC6: 5′-AGCCACGTTCTGGTGGGTTT-3′ (SEQ ID NO: 4); 5′-GGAGGCTTGGGATCACCAAT-3′ (SEQ ID NO: 5); MRP-1: 5-CAACTGCATCGTTCTGTTTG-3′ (SEQ ID NO: 6); and 5′-ATACTCCTTGAGCCTCTCCA-3′ (SEQ ID NO: 7). Following synthesis, PCR products were separated by electrophoresis through 1.2% agarose and visualized by staining with ethidium bromide.
DNA sequence analysis of two conformers detected in PCR products containing exons 19 and 28 of the pM5 gene revealed two private single nucleotide polymorphisms (SNPs) within the intronic sequence flanking these exons (Table 2). These were the only sequence variants detected in the 31 exons of the pM5 gene using a cohort of 20 PXE patients. Screening all eight exons of each of the two UNK genes revealed only one SNP in the first exon of either one or both UNK genes in 5 PXE patients. This was a silent nucleotide change (C33T) within the 11th codon (S11) of the open reading frame of either one or both unknown genes and therefore unrelated to PXE. Screening all 31 exons of the MRP-1 gene in a panel of PXE patients identified several sequence variants (Table 2) that are not functionally related to PXE as they either occurred in intronic sequences or did not encode changes in amino acids. In addition, two missense variants (R633Q and G671V) were seen in exons-14 and 16 in two unrelated PXE patients but these substitutions were unlikely to be responsible for PXE as they were also found in a panel of 200 alleles from unaffected, ethnically matched control individuals.
Finally, in screening the 31 exons of the (MRP6) ABCC6 gene, the first mutations that are clearly responsible for PXE were identified. A C->T substitution within exon 24 (C3421T) of the (MRP6) ABCC6 gene generated a stop codon at position 1141 (R1141X; FIG. 1 and Table 2). FIG. 1c shows the intron/exon structure of the (MRP6) ABCC6 gene. Intron sizes are drawn approximately to scale and the exons are numbered from the 5′ end of the (MRP6) ABCC6 gene. FIG. 1d shows chromatograms of partial DNA sequence from two unrelated PXE patients containing a nonsense and a splice site mutation in exon 24 and intron 21 respectively. In exon 24, the sequence shows a 3421C>T substitution (arrowhead), which would generate a stop codon at position 1141 (R1141X). PXE patients in a consanguineous Italian pedigree were found to be homozygous for this stop codon mutation. In intron 21, a G to T substitution (IVS21+1G>T) was observed within the invariant GT sequence of the donor splice site. This mutation would influence constitutive splicing of (MRP6) ABCC6 pre-mRNA and was found in two unrelated PXE patients as a compound heterozygote in association with either R1141X or R1138Q. FIG. 1c shows the sequence of the normal and mutant nucleotide and amino acid sequences for the nonsense mutation in exon 24 and the splice site variant within intron 21.
The C3421T variant in exon 24, which was not found in the control panel of 200 normal alleles, co-segregated in a homozygous form with a recessive PXE phenotype in an Italian family in which all unaffected individuals but one were heterozygote carriers (FIG. 4). FIG. 4 shows a large consanguineous Italian pedigree, SSCP conformers for a homozygous variant (R1141X) in exon 24 were noted in all four PXE patients (shaded symbols). All other unaffected family members were heterozygote for this nonsense mutation except one unaffected family member, indicated by an arrow. SSCP conformers from normal unrelated control DNA have been included. Total RNA from the PXE patient indicated by was used for an RT PCR analysis of (MRP6) ABCC6 mRNA and shown to have low levels of MRP6 mRNA.
This R1141X mutation results either in an (MRP6) ABCC6 protein lacking 362 amino acids at the C-terminal domain (FIG. 3) or a null allele, produced through nonsense mediated decay of a truncated (MRP6) ABCC6 mRNA. Indeed, an analysis of steady state (MRP6) ABCC6 mRNA levels in skin fibroblasts from PXE patients of this Italian pedigree indicated the absence of detectable (MRP6) ABCC6 mRNA, suggesting that the homozygous R1141X mutation results in the total loss of MRP6 gene product rather than the production of a truncated protein. R1141X was also found in a homozygous state in unrelated patients with autosomal recessive PXE from the United Kingdom and Belgium. Haplotype analysis of the PXE locus in families with the R1141X mutation revealed that this mutation is travelling within different haplotypes, suggesting that R1141X may be a recurrent mutation.
In two families with a recessive form of PXE from the United Kingdom and the United States, PXE patients were found to be compound heterozygotes. Affected individuals carried a substitution (TVS21+1G>T) affecting the donor-splice site of exon 21 of (MRP6) ABCC6, in association with either the nonsense R1141X substitution in exon 24 or a missense mutation, R1138Q also in exon 24. The splice site mutation occurred at the donor invariant dinucleotide and lowered the splice potential score from 72.1 to 53.8. Several other missense variants (Table 2) were also found within exon 24 and 28 of the (MRP6) ABCC6 gene. These single nucleotide substitutions, none of which were detected in the control panel of 200 alleles, occurred within highly conserved coding domains, particularly the domain in exon 28 encoding the Walker A region of the second ATP binding fold (FIG. 2).
All the detected homozygous or compound heterozygous mutations were found to be associated with autosomal recessive PXE. One missense mutation (3961G>A) was observed in a family with an apparently dominant form of PXE. All the other heterozygous alterations were detected in individuals with sporadic PXE. The mode of inheritance of these sporadic PXE cases is presently unknown.
Elastic fibers within elastic tissues such as skin and the arterial wall are fragmented and calcified in PXE patients. Dermal and vascular elastic fiber calcification is patchy and does not involve all elastic fibers in these tissues. Therefore, without wishing to be bound by any particular theory, calcification of elastic fibers in PXE is probably therefore, a secondary consequence of a primary defect of either elastic fiber assembly or the interaction of elastic fibers with other extracellular matrix components. Accordingly, MRP6 function is more likely to be related to fiber assembly or matrix interactions than calcium transport. Another possibility is that the maintenance of the integrity of normal elastic fibers, extracellular matrix polymers subject to constant mechanical stress, is modulated by (MRP6) ABCC6 in a way that has yet to be explained.
Polymorphic markers in genes encoding known elastic fiber proteins (tropoelastin, lysyl oxidase, fibrillin 1 and 2) were used in a linkage and sib pair analysis, performed with families with both autosomal recessive (AR) and dominant (AD) forms of PXE. No obvious linkage between these markers and the PXE phenotype was found.
TABLE 2A summary of all variants identified in the PXE locus in a cohort of 20unrelated PXE patients. Nucleotide (nt) numbering was derivedeither from full length published cDNA sequences or fromputative cDNA deduced from genomic DNA sequence. Heteroindicates that a variant was identified in a heterozygousstate. Homo indicates that a variant was found in a homozygousstate. Both, indicates that a variant was seen in bothheterozygous and homozygous states. Compound, indicates thata variant was characterized as a compound heterozygote.nt changeCodon #EffectLocationStatusUNK genepolymorphisms33C>T11Ser to SerExon 1HeteropM5 genepolymorphisms2187C>T729Gly to GlyExon 19Hetero3241G>A1081Glu to LysExon 28HeteroMRP-1 genepolymorphisms1062T>C354Asn toExon 9HeteroAsn1898G>A633Arg to GlnExon 14Hetero2001C>T667Ser to SerExon 16Hetero2012G>T671Gly to ValExon 16Both4002G>A1334Ser to SerExon 28HeteroIVS29-18delT——Intron 29Hetero(MRP6)ABCC6 genepolymorphisms549G>A183Leu toExon 5HeteroLeuIVS11-41A>G——Intron 11Both1841T>C614Val to AlaExon 14Both2490C>T830Ala to AlaExon 19BothIVS25+90G>A——Intron 25BothIVS27−46A>G——Intron 27HeteroIVS28+49C>T——Intron 28Hetero3′UTR+17G>A——3′UTRHetero(MRP6)ABCC6 genemutationsIVS21+1G>T—mRNAIntron 21Compoundsplicing3341G>C1114Arg to ProExon 24Homo3413G>A1138Arg to GlnExon 24Compound3421C>T1141Arg to XExon 24Compound + Both3775delT1259Fram ShiftExon 27Hetero3892G>T1298Val to PheExon 28Hetero3904G>A1302Gly to ArgExon 28Homo3907G>C1303Ala to ProExon 28Hetero3940C>T1314Arg to TrpExon 28Homo3961G>A1321Gly to IleExon 28HeteroExample 3
Mutation Detection in Dominant Pedigrees
The segregation of ABCC6 mutations with the PXE phenotype was studied in three pedigrees with an apparent dominant inheritance. Two of the dominant families (families 1 and 3) presented three generations of individuals, while the remaining pedigree contained only two generations. In all 3 families, a heterozygous mutation, R1141X in exon 24, was found to segregate with the PXE phenotype. In the two-generation family (family 2), an apparent loss of heterozygosity of the R1141X allele was detected in the second generation of affected individuals (II-1 to -3). Several polymorphic variants in the surrounding exons and introns were subsequently analyzed by SSCP. Only one variant, V614A in exon 14, was found to be informative. These results suggested a heterozygous sub-microscopic deletion, which was paternally inherited. This deletion, with a breakpoint between exon 14 and 24, extended beyond exon 24, probably corresponds to a recurrent deletion recently characterized in 4 unrelated families. The latter deletion, confined to a region of the gene between intron 22 and 29 eliminated 16.5 kb of genomic DNA. Therefore, individuals II-1, II-2 and II-3 of family 2 have inherited compound heterozygote mutations, clearly indicating the recessive nature of PXE in this pedigree. Moreover, the phenotype displayed by the mother (Individual I-2) carrying a heterozygous allele R1141X, suggested the partial expression of the phenotype in an obligate carrier. Indeed, individual I-2 showed discreet skin lesions on the neck associated with a positive von Kossa staining of a skin biopsy—(from lesional skin) indicating the presence of calcium salt precipitates typical of PXE. No angioid streaks were reported for this obligate carrier and no cardiovascular examination has been performed yet. In the remaining families (family 1 and 3) no other mutations were found. However, the PXE phenotype of the family members dramatically varied with the generations, clearly suggesting either pseudo-dominance or partial penetrance in obligate carriers. In family 1, the paternal grandmother and the father presented discreet skin lesions on the neck region associated with a positive von Kossa staining of a skin biopsy (no other manifestation were diagnosed), while both children, although very young, had already visible signs of plaques of coalesced papules on the neck and angioids streaks following ocular examination. In family 3, the paternal grandfather was severely affected with lax and redundant skin, disciform scaring of the retina (the vision is severely impaired at this stage) in addition to active gastrointestinal bleeding and intermittent claudication. The father was only diagnosed with a positive von Kossa staining of a skin biopsy while 3 of his children presented with the characteristic PXE skin lesions and angioid streaks.
Accordingly, heterozygote carriers of PXE mutations can develop PXE related phenotypes including sub-clinical manifestations of PXE. According to the invention, the penetrance of PXE lesions associated with a single mutant (MRP6) ABCC6 allele is between about 10 to 20% of all carriers, based on the frequency of described AD PXE cases. Therefore, a pedigree with AR PXE presents sub-clinical manifestations of PXE in 10 to 20% of the obligate carriers. These carriers will be parents of an affected individual and 25% of the unaffected siblings.
Example 4
PXE Heterozygote Frequencies
Upon screening a small sample of the general population (150 normal individuals) as part of a control panel to verify whether nucleotide substitutions found in the (MRP6) ABCC6 gene from PXE patients were indeed mutations, two heterozygote mutations were found in unrelated subjects. The first of these variants was a founder mutation (R1339C) only present in South African Afrikaners while the second substitution is a recurrent nonsense mutation (R1141X). R1141X is one of the four recurrent mutations that have been identified. These mutations are far more likely to be found in the general population than private mutations, which, in principle, can only be found in related individuals. The frequency of heterozygote carriers deduced from the presence of one recurrent mutation in the relatively small sample of the general population is 0.7%. However, four recurrent mutations have thus far been identified. Although each of the recurrent mutations is likely to have a different frequency, the frequency of carriers can be as high as 2.8%, which is consistent with the commonly accepted prevalence of heterozygote carriers in the general population (0.6 to 2.5%).
Based upon these frequency of heterozygotes and the predicted penetrance of the PXE phenotype in heterozygote carriers (10-20%), heterozygote carriers with PXE symptoms are expected at a frequency of about 0.25% of the general population. In a cohort of about 3000 individuals between 8 and 15 persons presenting cardiovascular, ocular or dermal symptoms would be expected. These numbers provide a basis for a statistical analysis of the correlation between single (MRP6) ABCC6 mutations and partial manifestations of PXE. Additional cohorts with clinically defined cardiovascular abnormalities such as the 1200 sib-pairs group from the Family Blood Pressure Program with hypertension, or the NHLBI Framingham study (http://www.nhlbi.nih.gov/about/framingham/) from which an appropriate cohort of 2400 to 4500 individuals is available, can be used to provide additional statistical significance.
Example 5
Creating a Mouse Knockout
To create a knock-out mouse for ABCC6 a neomycin resistance cassette is introduced between exons 28 and 29 as shown in FIG. 6. This results in the destruction of the second ATP binding domain whose Walker A domain is encoded by exon 28 and which is essential for the function of any ABC transporter.
Based on the cDNA sequence for the mouse ABCC6 gene (SEQ ID NO: 8), primers with restriction sites were designed to amplify genomic DNA and allow cloning into vector pPNT described in Tybulewicz et al., Cell vol. 65, 1153-1163, 1991. Specifically, a 2.2 kb DNA fragment from exon 26 to exon 28 is cloned into the unique BamHI of pPNT, and a 2.3 kb DNA fragment containing exon 29 to 30 was cloned in the XhoI site of pPNT. In the resulting construct, the neomycin cassette from the vector interrupts the reading frame of ABCC6 in exon 28 after the conserved Lysine in the walker A domain.
This construct will be linearized by NotI digestion and transfected into mouse 129 stem cells. The two resistance cassettes provided by the vector (TK and Neo) will allow screening for homologous recombination and knock out of an ABCC6 locus according to methods known in the art (see, for example, Tybulewicz et al., Cell vol. 65, 1153-1163, 1991).
The deletion construct shown in FIG. 6 will be transfected into E. coli and amounts of DNA sufficient for the targeted mutagenesis process will be produced. This construct will be inserted into embryonic cell lines and cells that incorporate the construct will be implanted into surrogate mothers and MRP6 null mice will be obtained according to methods known in the art.
According to the invention, the production of MRP6 null mice with symptoms resembling those of human PXE would provide further proof that mutations at the MRP6 locus are responsible for PXE. However, a more important use for MRP6 null mice, or mice that are carriers of an MRP6 deletion (heterozygotes having an allele with the MRP6 deletion and a wild-type MRP6 allele) is to provide an animal model to study the development and progression of PXE, and to provide an animal model useful in the development of therapeutic approaches (including identifying therapeutic drugs) to treat existing PXE or to prevent or reduce the symptoms of PXE before they develop.
Example 6
Examples of Oligonucleotide Probes and Probes Useful to Detect PXE Associated MRP Mutations.
Various probes corresponding to regions of specific mutations in ABCC6 are used in standard oligonucleotide hybridization, in oligonucleotide array or nucleic acid chip assays (see www.brownlab.stanford.edu), and in PCR-based techniques for the detection of PXE. Each of the mutations shown below are indicative of a mutation in the ABCC6 gene that leads to PXE.
In a preferred embodiment, the probe shown in SEQ ID NO: 10 is used for the detection of a G to A mutation in Exon 24 of the ABCC6 gene. CAGTGGTCCAGGGCATTCCGA (SEQ ID NO: 10)
In another embodiment, the probe shown in SEQ ID NO: 11 is used for the detection of a C to T mutation in Exon 24 of the ABCC6 gene. CAGTGGTCCGGGCATTCTGA (SEQ ID NO: 11)
In yet another embodiment of the invention, the probe in SEQ ID NO: 12 is used for the detection of a G to C mutation in Exon 24 of the ABCC6 gene. GACCGTTGGAGTCAGCCAGCTACTCG (SEQ ID NO: 12).
In another embodiment of the invention, the probe in SEQ ID NO: 13 is used for the detection of a C to G mutation in Exon 24 of the ABCC6 gene. GACCCTTGGAGTCAGCCAGCTACTGG (SEQ ID NO: 13)
In another embodiment, the following probes are used for the detection of specific mutations in Exon 26 of the ABCC6 gene.
In a preferred embodiment of the invention, the probe in SEQ ID NO: 14 is used for the detection of a C to T mutation in Exon 26 of the ABCC6 gene. GGATGTAGGACTATGCCTGGACGCCC (SEQ ID NO: 14)
In a preferred embodiment of the invention, the probe in SEQ ID NO: 15 is used for the detection of a G to C mutation in Exon 26 of the ABCC6 gene. GGATGCAGGACTATGCCTGCACGCCC (SEQ ID NO: 15)
In yet another preferred embodiment of the invention, specific mutations in Exon 27 of the ABCC6 gene are detected using the probes shown below.
In a preferred embodiment of the invention, the probe in SEQ ID NO: 16 is used for the detection of a C to A substitution in Exon 27 of the ABCC6 gene TGCAGCTAAGCCCCCCTGGC (SEQ ID NO: 16)
The probe sequence in SEQ ID NO: 17 is used for the detection of a deletion in Exon 27 of the ABCC6 gene. TGCAGCTCAGCCCCCCGGC (SEQ ID NO: 17)
In yet another embodiment of the invention, the probe in SEQ ID NO: 18 is used for the detection of a G to A mutation in Exon 27 of the ABCC6 gene. GCTCCAAGCTCCCTGGAGGC (SEQ ID NO: 18)
Mutations in Exon 28 of the ABCC6 gene in patients are detected using the probes shown in SEQ ID NOs. 19, 20, 21, 22, 23, 24 and 25.
In a preferred embodiment of the invention, the probe in SEQ ID. 19 is used for the detection of a C to T mutation in Exon 28 of the ABCC6 gene. CTGTGGCTCCAGGAGGCAGCTGAGGGTGGG (SEQ ID NO: 19)
In yet another preferred embodiment of the invention, the probe in SEQ ID NO: 20 is used for the detection of a G to A mutation in Exon 28 of the ABCC6 gene. CTGCAGCTCCAGGAGGCAGCTGAGGGTGGG (SEQ ID NO: 20)
Similarly, in a preferred embodiment of the invention, the probe in SEQ ID NO: 21 is used for the detection of a G to A mutation in a different region of Exon 28 of the ABCC6 gene. CTGCGGCTCCAGGAGGCAGCTGAGAGTGGG (SEQ ID NO: 21)
Probes in SEQ ID NOs. 22, 23, 24 and 25 are used for the detection of additional specific mutations in Exon 28 of the ABCC6 gene.
GTGGGCATCTTTGGCAGGACCGGGG(SEQ ID NO: 22) GTGGGCATCGTTGGCAGGACTGGGG(SEQ ID NO: 23) GTGGGCATCTTTGGCAGGACCAGGG(SEQ ID NO: 24) GTGGGCATCTTTGGCAGGACCGGGC(SEQ ID NO: 25)EQUIVALENTS
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
INCORPORATION BY REFERENCE
Each of the patent documents and scientific publications disclosed herein is incorporated by reference into this application in its entirety.
# SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 27 <210> SEQ ID NO 1 <211> LENGTH: 107820 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: “n” can be an A #or a T or a G or a C <400> SEQUENCE: 1 aagcttgcag aaggtggttg gcttttgttc tgaatctaac aagacttatc gg #gaggctct 60 tggtgcctgg cactggctga atgcccaggt tgggggaggc agagcagatg aa #gcatctgc 120 ccgcgagggt gggtggagct gcttgtgaaa cgtatcatcg tagcccggga gc #tgggacac 180 tgaagcccgg agaaggtgct catggaggat gggaagggct tcccgaggaa gt #gacatctg 240 tgctcccatc tgctgggtga tgaggaatgg cctggacggg atgggcatgg tg #ggtggagg 300 caggcggcct gtgtgcaggg aaggaagggg agagttacag gatgagatga gt #tgagggaa 360 gaagcatggt tggcaactct aacagcgctg ggaggccatc ggaggggggt ga #cgagattg 420 accctatcct catgggcatc tcagctgggc tgagtgtgct ggaaccggcc at #tgcatgga 480 cacagtcact cctgagggga tgtgatcaac aggcggaatt ctgtcactta at #gataacaa 540 tagtcaccag ctaactgaat gcttactgtt aggtcaaact atatgaaact gc #taatactt 600 atttcttatc tacagaaaca gctatttcct gtggttcaac ctagtattac ca #ggcactgt 660 gcttagtgac atcatgcata tctatatgat ttatgaaata atgtgtccac gc #aaatacac 720 atcacatgta agactgtaac tcttacatgt caccctcaca atgaccccgt ga #agcaagct 780 ttgttttgtt tcgtttgttt tcttaataat attttatttt tgtagagatg gc #attttgcc 840 atgtgcctgg gctggtctca gactcctggc ctcaagtgat ctcccgcctc tg #cctcctga 900 agtgcgggta ttacaagcat gagccacccc acctggccga gcaagccttg tt #gttcccat 960 tttacagata aggaaactga ggcttagaga agtaaagtgt tagtcgtgtt ta #tattgcca 1020 gtcagtagtt gagtcaggat ttgaactgag gtctcgttga cctcaaagcc ta #tgctgaaa 1080 accacactgc tggttccaga aaaccctaga ggtgaaaggc ttcagagagg ca #gtacaggg 1140 tagaggttag cactttgcag cccagatggc ctgggtttga atcccagttc tg #ccccttgc 1200 tagccatgtg accttgggga ggagattaac tagcttcttt gtgccttagt ct #acccatca 1260 catataggaa tgagcacctc aggttttttg tgaggattga atgaactgat gt #ttgtaaaa 1320 ctgcttagaa cgatgcctgg ggctgtgggc tttgtataag cgtgagctat ta #ttgtcact 1380 gtccttgtca ttggtggtgc tattcctgtg gttcaccagg tgagtgggca cc #cctgtgag 1440 ggcagcccgg ctctaacatt ttgcctcctg gaggtatcgg ttacgtctag at #gttctcca 1500 gcacagccct gccctgggag gatggcagga gggaaccttc atcaactccc cg #cgtctgtt 1560 ctctacccca gaggttctac gtggcttcct cccggcagct gaagcgcctc ga #gtcggtca 1620 gccgctcccc ggtctattcc catttcaacg agaccttgct gggggtcagc gt #cattcgag 1680 ccttcgagga gcaggagcgc ttcatccacc agagtgacct gaaggtggac ga #gaaccaga 1740 aggcctatta ccccagcatc gtggccaaca ggtgggcatg gtgggcctgc ag #gagcgggt 1800 ggaggaggcc gccttagcac cttgtctctt tgcctcgatc ttttcctcgc ac #cttgagct 1860 gggtataaag ccaaaccccg gccttgcaga aaggatggag aggcttgatg ag #cgcggagg 1920 acagatgaat cattaagagc agacagcggc actgtagaca tgcagtgccc gc #ggcattta 1980 agtgcaggga cacagctctt ctggagtcag aaagccctgc aagtgcttcc cg #ttaactgt 2040 catcctagtg atgcaagact gccagcgacc gactctgcta ttgagtatct tc #ataccgct 2100 gttcccgtct gggggtgatc atgcacccct gggtgatgtg tgtcagaagc aa #tttactaa 2160 tactaagcta aaccatatga gattgtcatc ttgtgggcca gatgtcatgg ct #cacgcctg 2220 taatcccagt actttgggag gctgaggcag gaggatccat tagattccag gc #cagcctgg 2280 gcaacatagc aagaccccca tctctcttaa aaaaaaaaaa aaaaaaaaaa ag #tagcccat 2340 catggtggtg tgtgcctgta gtcctagctt ctcgagaggc tgaggctgga gg #atcgtttc 2400 agcccaggag ttcaaagttg cattgagcta tgattacacc actgcactcc ag #cctgggtg 2460 acagagtgag accctgtctc tggaaaaaca aaaaaaggag atgggggtgg ga #gattgaca 2520 tcttgtggat cacagataat agcatcaatc caaaagaggc agaagtttgc ta #attatttg 2580 ctgaatttag agaagtgtcc ctctcaccca tttgcatcct tatagacttt tc #tgaaaaag 2640 tgacagcacc ccagaggtgt cccataacca ttagcccgtc ttacacactc ta #atcccata 2700 gcgtaagtct gggtgggcta accctgaatg attacagacc ttgacttccc tt #cagaattt 2760 ttagggagtt tgtcacaatc tggctgtgtc tgtcggagta gtgaggatca gt #cacttggt 2820 tcataagggc tgcaatggag aaaagatcaa caccccatct tcctagaatg ct #ttatattt 2880 tagaacatta aaataatagt tctagtgcta tatgatatca tacgaagcct ag #ctttaaac 2940 aaataagatg gccaggcgcg gtggctcaca tctgtaatcc cagcactttg gg #atgccaaa 3000 gtgggtggat cacctgaggt caggagttca agaccagcct ggtcaacatg gc #aaaatccc 3060 atctatatta aaaatacaaa aaaattagcc gggcatgatg gtgggtgcct gt #acttggga 3120 ggctgaggca ggagaatcac ttgaacccaa gaggcagagg ttgcagtgag cc #aagaccgc 3180 accattgcac tccagcctgg gcaacgagag cgaaactcta tctgaagaaa ta #atagaaga 3240 gaagagaaga ataaaataaa aagtaaaata aaatagttct gatggtacat ga #taccatac 3300 taaacctagc tttaaacaaa taagatgacc aggcacattg gttgacacct gt #aatctcag 3360 cactttgggt ggccaaggca ggcgggtcac ttgagcccag cagttcgaga cc #agcctggg 3420 cactctaggg agaccctgtc tctaaaaaca aaacaaaaaa ccaaaaattt gc #caggtgtg 3480 gtggcatggg cctgtagtcg cagctactca ggctgaggca ggaggatcac tg #gaacttgg 3540 aaggttgagg cggcagtgag ctgtgatcat gtcatccaca ctccagcctg ga #tggcagag 3600 taagacccca tctcaaaaaa acaaaatgac agaaaacatg atttctgttt ct #attttaaa 3660 gggtaaaata gtatatttta acactttgaa atgaagagtc tgggcttggg aa #cgttacaa 3720 tgatgtttac tcgtactagt tacgcactcc cctcccagat ctgtctcgta ac #aagagact 3780 gttattttct acttgttttt agccaaaagg ccgagaaacg atggttattt ta #aatcccta 3840 gtgtctctta cagttgatgt cttcttagta tttaggaatt tccaggacat ct #ttttgttg 3900 ttgttaatgc actgtgtgtg tgtgtgtgtg tgtgtgtgta tgtgtgtgtg tg #attatagg 3960 agtgacccac tacgcccggc tgtgtgtgtg tgtgtgtgtg tgtgtgtggg tg #tgtgtgta 4020 tgtgtgtgtg tgtgattata ggagtgaccc actacgcccg gcctatgtgt at #gtatttta 4080 aaggcttcaa tgagaaaaaa gttggttctt aaaaaggcaa gcttcagatt cc #agggaaga 4140 ttgcctctgg agagctctgt tttaatccat gggtttgcca gattaatgag ga #tttactgg 4200 cctcgtgcct tcggccctcc ctaccctgcg cccattgtgc atgttttgaa aa #agcagtgc 4260 caggaaggac tctctctgga attactgcgg agttacttga gttagcaaag aa #tccccttc 4320 ctcccccaag agctgtaagc caagtctctg tagagctgac tccatgcctg tt #tgtctgcc 4380 tgtgtgtctt ggcgcaggtg gctggccgtg cggctggagt gtgtgggcaa ct #gcatcgtt 4440 ctgtttgctg ccctgtttgc ggtgatctcc aggcacagcc tcagtgctgg ct #tggtgggc 4500 ctctcagtgt cttactcatt gcaggtaaga ggggatgctc ttggctggat ta #ttaaagtc 4560 tgttaatggg ggagccagtt gtccttggct ttggattcca gctccaacag ga #atggggga 4620 gaggaacttg agaggtacgg agtttgagga gcaggtacag tgccacagtg cc #tggtgacc 4680 aactagagca ggagacggat ttgacatgtg gccaggattt tccccatcag tc #acacagat 4740 tccttagtgg cccaagagga tacttccagg tacgagggga atgcttttaa ag #ctatgaat 4800 ttccctctaa gaactgcttt agctgcatct cacaaatgat gatacattgt gt #tttcatat 4860 tgtcacctgg ctaaaaatat tttccagttt cttattatgt ggcccatgag tt #attttgga 4920 aatgtgtgtg cttaggagat ggcaatgtgg caggcctggg tgatggctat ac #ctggggtt 4980 gctaatttcg gtacctttct tacctgaatg tttcataact cataaccttt ta #tttttatt 5040 tatttatttt ttttggagac ggaatctcac tctgtcaccc aggctggaat gc #agtggtgg 5100 gatctcggct cactgcaacc tctgcctcct gggttcaagt gattcttctg cc #tcagcctc 5160 ccaaatagct gggtttacag gtgtgcgtca ccatgcctgg ctaattttta ta #tttttagt 5220 agtgactgat ggggtttcgc cacatcggcc aggctggtct caaacccctg ac #ctcaggtg 5280 atctgaccgc ctcagcctcc cataattcat acttgttgaa aataatttgt tt #cctattat 5340 ctcagtggaa aaaaaaaaaa aaagaaaaag gaaagtcaag tacgcccgct ta #ctctagaa 5400 atgccacgtg actcttccac tcacaggtca ccacgtactt gaactggctg gt #tcggatgt 5460 catctgaaat ggaaaccaac atcgtggccg tggagaggct caaggagtat tc #agagactg 5520 agaaggaggt aggcaagggc ccctggctgg acctcttggt ctttggtgta gc #tttacccc 5580 aaggagatct ctggacccta tcctgtgcac ctctgcctct gagctggata cc #tcaccagg 5640 tagaagtgca tcttaacgct tgtccagtct ttttgcagca cttatttaga gc #ccggtttt 5700 agggtgaaaa tagtttaccg gctttaccca agatctgggg tatccatata cg #agactgtg 5760 ggatgctgtc agggcattca gaaggtattc acattgtgaa gaagtttccc cc #tctatttc 5820 tctttcataa cttctgatgg tatcacagag aaagtcttag tctggggcta gc #aggtcttt 5880 aacaccttag caattgagat gatctccctt caacagacag ataaacagca gc #cctcacac 5940 ttggagtctt caacaggacg gcttctgtct atcagaaata accttctgtt at #ttgttatg 6000 aatttggttt ttttgtgtgt gtgatggagt ctcactgtca cccaggctgg ag #tgcagtgg 6060 cacaatctcg gctcactgca acctcctcct cccaggttca agtaattctc ct #gcctcagc 6120 ctcccaaata gttgggatta caggtgcctg tcatcatgcc tggctaattt tt #gtattttt 6180 agtagagatg ggggtttcac taagttggcc agtctggtct caaactcttg ac #ctcaggtg 6240 atccgcctgc ctcagcctcc caaagtgctg ggattacagg cgtgagccac tg #cgcctggc 6300 ctgttatgta tttgtatagg ggactcctgt tacggaaaat aatactactt tt #ccttttgt 6360 gattgtaata aattttcctc ttaagtaagt tgagaaatta agtctaagtg ac #ttgattaa 6420 gcatattaaa acaacaagag aatgagtaca tgcatactac acgaatgatg ta #gctgggaa 6480 ctgaccaaag tttgggaaac cctgcagtta ttgaacccca gtcccctttt ta #tagatgga 6540 gaaaaaggga acctggggag ggacaacagc tgatccaagg tcccacgtgg ct #tggtagaa 6600 cagctgggac taggacctgt gcctccagtc tttgatgttg cgttgccctt aa #taactgcc 6660 ttcttaggcc ctgaacagca gcacaagtag gaacagcagt gataatagat aa #tcacaata 6720 atgcctggcg acacccccac cctacattaa tgataacagg gacacacata gt #gccttgta 6780 gaatgtcagg cccagactta aacgtttaat atagagtaat gcactcagtc tt #taccccgc 6840 tctatgactg atttttgaga cacggtctca ctcttgcccg ggttggagtg ta #gtgcgatc 6900 tcattcgctg cctcccaggc tcaagtgatt ctcctacctc tgcctcctga gt #gtctggga 6960 ccacgggcat atgccatcac accggactga tttttgtatt tttagtagag ac #gggatttt 7020 gcccagactc atcttgatct cctgagctct agtgatctgc ctgccttggc ct #cccaaagt 7080 gctgggatta caagcgggag ccaccatgcc cagcccagcc ctataattta ga #tgctacta 7140 ttacccccat tttacaggtg aggaaactga gacaaaaagc tgaagttact tg #cccaagat 7200 cacatggctg gtaaatggca gacctaggcg ttgagcctgt gcctcctcag ag #accctatc 7260 cagtgccatg ggagtcatgc tacccggcct cctgaggaga gatgcccctt gg #gagtgaga 7320 ccaaggcctc tgtaaggtct gtcctcctga ggaattcaca gaggtgacct cg #gcccactc 7380 ctttaacatt ctgactgggt gaaccaggtc ccatgtcacg ggtgagcatt gt #aagaatgg 7440 cgtgagtgcc cccgtgagga accaagggtg tattacaccg gcggcttcca ac #ttgacact 7500 gaatttaatt cacttacaag gtatttcatt aggttttttt tttttttttt tt #tttagatg 7560 gaatttggct ttttttttgc ccaggctgga atgcagtggc acgatctcag ct #cactgcaa 7620 cctccacctc ctgggttcaa gtgattctcc tgcctcagcc tcccaattag ct #gggattac 7680 aagtacccac caccccgccc agctaactta tttcattagt ttttataata gc #ctcattga 7740 catgtgaatt tcacatgcca tggaattcac ccagttaaag cgttcagtta ga #ttgaattc 7800 agtttttttt tgtttgtttg agacttaagt ctcgctccag cctggagtgc ag #tggcatga 7860 tctcagctca ctgcaacctc cttctcctgg gttcaagcga ttcccagcct cc #tgagtagc 7920 tgggattaca ggcgattttt gtatttttag tagagaaggg atttcaccat gt #tggcccgg 7980 ctggtctcga actcctgacc tcgtgatcca cccgcctcag cctcccaaag tg #ctgggatc 8040 acaggtgtga gccaccacac ccggcctgag ttcagttttt aaaagcattt ta #cttttgac 8100 tgacttttat atttttagaa ggatcgtgtt tgacaaaccc aagagaaagt aa #ttgtcctc 8160 attagtccta ccactattct gtatttgcat gtatttttat atatagatag aa #agttccac 8220 atacttctct ccattccgct cactgtgttg ttatagcatc tccccttcaa tt #atgtacat 8280 aaattataaa atagagatac acttgttgtt ttaaaaaaga aaaaatcaat ac #agggctgg 8340 acacagtggc ccacgcctgc aatcccagca ctttgagagg ccaaggtggg tg #gatcactt 8400 gaagccagga gttcgagacc agcctggcca acggtgaatc ccgtctctac ta #aaaataca 8460 aaaattagtt ggcatggtgg caggtgccta taattccagc tacttgggag gc #tgaggtgg 8520 gaggatcgct ggaacccggg aggtggaggt tgcagtgagc tgaagaaaca tc #actgcact 8580 ccagcctggg tgacagagtg agactctgtc tcgaaaaaca aaaaaacaaa ga #agtttatg 8640 gtggagaaag acagtttgtt cctgttcgcc ccgttcctct cctctccaga ga #gaggcccc 8700 attagcattc gggtgaattt cccccaaaac tttcccgtgt ggattcccac at #accccaac 8760 acttttgttt gcttgtttct ttttctttta acgtaagtgg aatctacctg tt #atcctgtg 8820 aaaccttttc tttaaccatg aggcaccttt gcatctgtgt atagtaacag tc #actgcctc 8880 taagggctgc tgtgaggctc agatgagatc atgggtctca agtgctgagc ag #agcaactt 8940 gccttagttg cattgtaagc gctcaataat aacatttatt ttttggccag gc #gcggtggc 9000 tcacgcctgt aatcccagca ctttgggagg ccaaggcaga tggatcactt ga #gcccagga 9060 gtttgagacg atcctgggca acatggtgag acatcgtctc tacaaaacaa aa #aataatac 9120 tttttgttgt tggcggtggt ggtggggttt ttttttgttt tttttttttt ga #gacagagg 9180 agtcttgctg tgtcacccag actggagtgt agtggtttta tcttggctca ct #gcaacctc 9240 tgcctcccag attctagtga tcgtcgtgtc tcaacctccc aagtagctga ga #ttacaggc 9300 tcccaccatc aggcccagct aatttttgta tttttagtag agccagggtt tc #accatgtt 9360 ggtcaggctg gtctcaaact cctgacctca agtgttctgc ccacctcggc ct #ccctaagt 9420 gctgggatta caggtgtgag ccactgcgcc ggcaacgctg tgattttata gc #acgtccac 9480 aaaagggctg catgtcttgc ctaaaagttg cccggcgttt tcttgttatg tg #ccgtctgc 9540 agtgcccctg agcttggcca tgtgctctgc agcctggttc agcacctgtg tg #tgccctgg 9600 acggggaggt gcattccccg aggctaaaac cagtgaacct ggcccaggcc at #atccagct 9660 gtgggcctca ggaaatgctg aactgaacta cttttcaaaa ggagggttgt gt #gtccctgg 9720 gcaagttacc gcccctctct gtgtctcagt ctccttgtgt gtaaactggg ga #taatgaaa 9780 ggaccctccc acatggggtt gctgtgagga ttggatgaga cactgcgata ca #gatgctgc 9840 ttttatcctt gccttcctgc cggggtgggc agccagggta actcactttt at #tgtcgtgt 9900 ctgtccagag aagaccactc atttcattga ctccatttat aaatatttat tt #aaattttt 9960 ttttatcaaa aagtaagttt tattggcatc taaaaacaaa attcacccaa ca #ctgaaaca 10020 tacttcaata tttatgttat tgttttcttg tttctttttt actcactgca gt #gtgaggaa 10080 caaatcacat ttactttgga gaaacagaga ccatagtgta gattttacaa aa #tcactttt 10140 taaactctct gtattgcgct cctcaaatac ctagagccag tctgtgcata ac #atggcaca 10200 ctgttgtcta aaccgtaaaa ttttgcatca gcctaaagat atggataaga ta #tacctcca 10260 cttgctcttt tgaaatacat ctattacctt atccagccta atgatagtta cc #taaaaaat 10320 tctttgttcc gtaggaagtc tctgacaagc tgttattcat ttccttgacg tt #aaaagaat 10380 ctgggggcaa catttatatt ttatcagaaa aactttttaa aagtttacct at #catgttca 10440 tattgagaac aatgtctgtg gcgggcatgg tggctcacgc ctgtaatccc ag #cactttgg 10500 gaggtagagg tgggcggatc atgaggtcag gagttagaga ccagcctggc ca #acatggtg 10560 aaaccacatc tctactaaaa atacaaaaat tagctgggtg tggtggcggg tg #tctgtaat 10620 cccagctact caggaggctg aggcaggaga gtcgcttgaa cctgggaggc ag #gggttgca 10680 gtgagctgag atcatgccat tgcactccag cctgggcgac agagtgagac tc #cgtctcaa 10740 aaaaaaaaga acaatgtcta tacaaatcag ttgtacaatt attttaaaag aa #tggtgagc 10800 atgaacgtca cgttaattct ggcagacaaa aatgaacaac tatggtccat tg #agccatta 10860 tctgttacac agagatgaca gctttacaga aggtatctct gacctactga gg #gatgatca 10920 tgtcctctca gtttctgtgc cttctaccac tagttcactt tctatatcag ca #gctgtgtc 10980 actcttcttg tttatgttca taaatgtgtg ttgaacacct actatgtgct ct #gagccctg 11040 ggatacagca gtgaacaatt agagcctgtc ctcattgagt ggatggtgca gt #gggtgtgg 11100 gagacagaat acactcaagc atgcgagccc caagagggct ggggacaggc ag #tgccctga 11160 aggagaaggc agtgcgggag gggacagagg gacacagggc tgagagggtg ct #ctgtatcg 11220 accagagatc cacaggatgc aagggggtca tttggggaat aacattccag ga #agggcaac 11280 cccccagtgc tgaggcctgg gaggccacct tgggcagcag agtgagtgag ag #gggaggtc 11340 aggggagtca cagctttacc agatggactg gaaattcctt actctctccc tt #cactgcga 11400 tcgaaggcgc cctggcaaat ccaggagaca gctccgccca gcagctggcc cc #aggtgggc 11460 cgagtggaat tccggaacta ctgcctgcgc taccgagagg acctggactt cg #ttctcagg 11520 cacatcaatg tcacgatcaa tgggggagaa aaggtgggta cacatcgccc ca #ttccctca 11580 cccattccca gtcgggcaca gggtgccatc gggcaggtga acctagctgc ag #cgtctccc 11640 cagtcactca cggctccaca cctttgcttg aatggctttt tggggggctg gg #agtggact 11700 gtggcagtaa aagctgttca gagcgcatac aacttgcaga agtgaaggct tt #taggtgaa 11760 ctgacagcct gaagaccaaa tgagccccac agatttgttt tggaagattt tt #tgttgttg 11820 ttgttgagag agggtcttgc tctgttaccc aggctagagt gcagtggtgt ga #tctcagcc 11880 cactgcagcg gcagcctccc aagtgggggg actacacatg gttgggagtg ca #ggtgtgtg 11940 ccactgcacc tggccatttt ttgtattttt tgtagagatg ggggtcctac ta #tgttgtcc 12000 aggctgatct ggaactcttg agctcaaccg gtctgcccgc ctcagcttcc ca #aagtgctg 12060 ggattacagg aatcagccac cattcctggc ccctggaaga agttcttttt tt #gttttttg 12120 gttggttgtt tttttttttt tttttttttt ttttttgaga tggagtctta ct #ctgttgcc 12180 aaggccagag tgcaggggcc cgatctcagc tcactgcaac ttctgcctcc tg #ggttcaag 12240 tgattctcct gccttagcct cccgagtagc tgggactaca ggcatgcgcc ac #catgccta 12300 gctaattttt gtgttattag tagagatggg gttttgccat gttggccagg gt #ggtcttga 12360 actcctgacc tcaactgatc cacccgcctc agcctcccca agtgctggga tt #acaggtgt 12420 gagccactgc acctggcctg gaagaaattt gaataagttg caaatactga aa #aatctgga 12480 agacttaata taaaaattta ttttctgctt tttttggaag atcagaacat ct #ggcaacat 12540 caggtcaatc ctcccccgcc tggctctttc tagtcaacct gtgagcctcc tg #gttcaccc 12600 cagtccctcc ctgtcccatt cattgcctag ttggcccctc caaaacatta ga #atttgtga 12660 tctctagaat aaggtgtcac catcccttct agggggatgg ctcaagggaa gt #gagaaatt 12720 gtcagaattt tggaaccttc tcttggttcc gagctgttct tggaagaggt tc #cttgacct 12780 gagtgatacc cttagacttt cctctggaat tggtctgaca gtcttcctgg cc #atttgctg 12840 ggggacaagg ctgctttcac ctctgaacat atggacttat tgaactgttc ct #acgtacct 12900 cccacaaagc tcagaacatt ctgttcccag cagataattt ctctctgagt ta #cagagaag 12960 agcagagtgg gtgatgttct tgctgtcttt ttttgttttt gtttttgttt tt #gtttttgt 13020 ttttgttttg ttttgttttg ttttgagaca gcctctcact ctgtcaccca gg #ctggagtc 13080 cagtggtgct atttcggctc actgcaacct ccgtcccctg ggttcaagtg at #tctcctgc 13140 ctccgtctcc cgagtatctg ggactacagg tgcatgccac cacgcccagc ta #atttttgt 13200 agttttagta gagatggggt tttaccatgt tggccaggct ggtctcgaac tc #ctgacctt 13260 ctctgatcca ccttcctcgg cctcccaaag tgctggaact acaggcatga gc #caccgtgc 13320 cccagccctt gttgagtctt tatggcttat ctcacgtcat gagaattttt gc #acgcatgc 13380 tgctctgtga cacccctgta ggagggaaga aggagcccac ttctcaagag cc #aggcagga 13440 aggggagaac tggaggtcag gaacatcatc ctttggccat tagctagaga ac #ctagttcc 13500 ttcaagagag gatgcatgga gaccaggtca tagcaaaggg ccggaagatc tg #cctgaatc 13560 tttcagatat ttcaacaact catgatggga aactcaccat caaaggtgtg aa #aaacagtg 13620 gggaaatgag gaaatgcctg attattactt aatagtttct tgagtctaaa ca #aatagggc 13680 tttgttggaa attccttctg cctcttctgt atctcttttg aggtctctag ta #acttataa 13740 aaagccgagt cattcctttt gggagcctgg caaagggaag agagtccttc tt #gaccttcg 13800 gccgaaacac ccttaaagga gtgtctctgg gcagcgcgca agggagaggg ct #gtcgagtt 13860 gggttgacca gatgactgat gcctgaggtg gggccgagat gagggcactt tg #gggcaggg 13920 acaagtccgg atgccagcat tcccaccaca cctgggccct tctgtcctgc ag #gtcggcat 13980 cgtggggcgg acgggagctg ggaagtcgtc cctgaccctg ggcttatttc gg #atcaacga 14040 gtctgccgaa ggagagatca tcatcgatgg catcaacatc gccaagatcg gc #ctgcacga 14100 cctccgcttc aagatcacca tcatccccca ggtggggtct gggtgtggcc ca #gggggtga 14160 gccagagctg gcaagcccta tgattgcact gacagtggtg tatgtatatt tt #tggggcaa 14220 acatacattt ggccctactt catcgttctt tttttttttt tttttttttt tc #ctgaaaca 14280 gggtctcgct ctgttgccca gagtggagtg cgctggcgca atctcagctc ac #tgcaacct 14340 ccgtctccca ggctcaagcg attctcccac cccagcctcc tgagtagctg gg #actacagg 14400 cacatgccac cacacccagc taaatttgtt ttgtactttt ttgtggagat gg #ggttccac 14460 tgtgttgccc aggctgccct tgaactcctg ggctcaagca atccacccac ct #tggcctcc 14520 aaaagtgctg ggattacagg catgaggcac cgtggctggc cttcattgtt tt #tattgaag 14580 ttaggctgtg ctgctgcttc cctgaatttc ctcttagtat atgattaaca ac #gtgggaat 14640 taactgacta tcagtcccga cttcctgtcc ccgggagggg tagtttcaga gc #atctagaa 14700 aaatccaaaa agacaccgtc ttctctctct gctgccagag tcagactgag ca #tctctaac 14760 ccttccaaga gctagacaag aaataagact ttttaatttt cgattcacgg gg #tgcacctg 14820 caggcttgtt acgtgggtat attgtgtgat gctgatgctt cggcttctat gg #atctcatc 14880 acccaactat tgaacagagt acccgagaga gagtagtttc tcaaccatta cc #ctcctcca 14940 tctgtcccca cttatggagg ctccagtgtt tatcatttcc atctttacaa cc #atgagtac 15000 gcagagttta gctccctctt acaagtgaga acacacagta tttggtgaga aa #taaggatt 15060 ttctttttct ttctcttttc ttttttttct ttttttaact gagacggagt ct #cactctgt 15120 cacccagtgc agtggcacga tctcagctta ctgcaacctg cacctcctgg gt #tcaagcga 15180 ttcttctgcc tcagcttccc aagtagctgg gattataggc acgcaccacc at #gcgtggct 15240 agtttttgta tttttagtag aaacggggtt tcaccatgtt acccaggctg gt #ctcaaact 15300 cctgacctcg agtgatctgc ctgcctcggc ctcccatagt gctgggatta ca #ggggtgag 15360 ccaacatgct tggctgaaat aaggattttc tagaccaatc cccgcaggtg ga #ttccttaa 15420 tatgttgcct tttagtgtaa tcttccctaa agtgtcttag aagattctct tc #tgtggttg 15480 gatgacggga gaatccacgg gactttactg ttaggaatca cctgtgctgc gt #ctcatttc 15540 tggaggttct caacccactt gcatattgaa ggctccagga agttgtatgg aa #aggaaatc 15600 tgttgtattc tgccaaactc agactttcca gacttttttt ttttttccat ta #ttaaggca 15660 attttttttt tggagataga gtcttgctct ggagtgcagt ggcacaatct tg #gctcactg 15720 caacttccgt ctcccgggtt caagtgattc tcctgcctca gtctcctgag ta #gctgggac 15780 tacaggtatg caccaccatg cccagctaat ttttgtattt ttactagaga ca #gggtgttg 15840 ccatgttggc caggctggtc tcgaactcct gaccttaagt gatccactcg cc #tcggcctg 15900 ccaaagtgct gggattacag gcgtgaacca ccgtacctgg cctttttctc ca #ttattaac 15960 atctccagaa atagtgattc caaggagctc tgatacccca ccttcaacag tc #ctggccag 16020 aagtccttag gtcgcctcca tccatgtcag catgacacag gtgtcacatg cc #gtccactc 16080 tcttctctct gaacaggacc ctgttttgtt ttcgggttcc ctccgaatga ac #ctggaccc 16140 attcagccag tactcggatg aagaagtctg gacgtccctg gagctggccc ac #ctgaagga 16200 cttcgtgtca gcccttcctg acaagctaga ccatgaatgt gcagaaggcg gg #gagaacct 16260 caggtaggcg ggggtgaaca aggagacacc gggtaaggtg tcctaggcgc ca #tctcggta 16320 ggggtgtttg aagattctgt ccagatctgt gtcacctgga tttgagtccc ag #atgaccat 16380 ttgtcccttc acctcttgga gcctcagttt ctgtatctgt aaaacgggtc tc #aatccagg 16440 ctctttgtac catgaggtag aataaccagg atgaccagta catttccttt ta #tacacacc 16500 agctccattc agttgatagt ggctgtcagt tgttaagcta tggaaagtct tc #tgtaccag 16560 ttggtcacta gcactgctct gagcccccag gtccccatgc actaccccag ct #gtcttggt 16620 ctctaccagg atcctggagc tctgtccatg acccagcaac taaagcatta at #gcctggca 16680 caccagcgga acctctgggg tcctgctttg gtggtgtttg ttagtgcctg gt #tctggttc 16740 tgttatccgt ctccatgaca accaaccata aagcctcagg catgttcaac ca #taaagcaa 16800 cgatcattgc tgccatacga gggcagtcag ccaggtggct ctgctgatct cg #gctgggct 16860 cacatgcatg tctgggagtc agctggctgt tggctgatct cggggtcagc tg #gcttttgg 16920 cctcaggtgg ggcaagaagg gtatgttccg tgcatccctc attctccagc ag #accagctt 16980 gggcatgttg tcatggcgat ggcaggggca caagagcgtg caagccccta tt #gcatctaa 17040 cagtattctt ttggctgtcc ttacttttgc tggtgtccca ttggccaaag ca #aggaacat 17100 gtctgattcc agagccacct ctcatggccc cacagttgga taagggatgc at #gggtatga 17160 ggcctttttt tttttttttt tttttttttt tgagacggag ggtctcactc ta #tcacccag 17220 gctggagtgc agtggcgcaa tctcatctgc aacctccgcc cccaggctca ag #caattgtt 17280 ctgcctctgc ctcctaagta gctgggatga caggtgcctg tcaccatgcc ca #gttaaatt 17340 ttgcattttt agtagagatg gggtatcacc acattgtcca ggctagtctc aa #actcctgg 17400 cctcaagcga tccacccgcc ttagcctcac aaggtgctgg gatactaggt gt #gagccact 17460 gtgcccggct cttatttttt ttttatttta ttttttttaa gagacagtgt ct #cactctgt 17520 tgcctaggct ggagtacagt ggattgatct cggactctta actcctggac tc #aagcaatc 17580 ctgcctcagc ctcccagtaa ctgggactac aagagcatgc caccacaccc ag #ctaatttg 17640 tttatttttg tttttggaga gatgggggtc ttgctttttt gcccaggctg gt #ctcaaatt 17700 cctggcttca agctatcctc ccacctcagc ctcccaaagt gctcagattg ta #ggtgtgag 17760 ctgctgtttt gagaatgatt ctgaacctgc atcttgctga ataggagatg tg #ctctgatt 17820 gattagtgat gtctgctgca gacacagatg ttgggagtgg acatgctttc ct #ggtcaagc 17880 aacatagagt gtctcctttc gcttctccca gcctgggcct aggttcaggg tc #aggggtgg 17940 tttgacccaa cactatctcc tggttttttt cttccggtca agtgtcgggc ag #cgccagct 18000 tgtgtgccta gcccgggccc tgctgaggaa gacgaagatc cttgtgttgg at #gaggccac 18060 ggcagccgtg gacctggaaa cggacgacct catccagtcc accatccgga ca #cagttcga 18120 ggactgcacc gtcctcacca tcgcccaccg gctcaacacc atcatggact ac #acaaggtg 18180 atgccactgg cacagtggcc tctaggcttt gggagtttgc cttactcact gg #ctcactca 18240 ttaattcatt aattcattca acactgtcct tatccctagt gacagcccca gt #gggtggat 18300 cctctcttca tcctggatgg taccagctat ttcttttttt tttttttttt tt #gagacaga 18360 gtctcgcttc atctctggag tgcagtggtg tgatctcggc tcactgcaac ct #ctgcctct 18420 ggggttcaag catttctcct gcctcagact cccgaatagc tggaactaca gg #aatgtgcc 18480 accacgccca tctaactttt atatttttag tagtgacagg gttttgccat gt #tggccagg 18540 ctggtctcga actcctgacc tcaggcgatc tgcccgcctc cgcctcccaa at #tgctggga 18600 ttacaggcat gaaccgctgt gcccagtggt accaggtatt tctaatatca tc #tagtcatt 18660 cattcacgtc agcgcacctg cggtgttccc agacactggg gactctgtag gc #tgctgtca 18720 gacaaagtcc ctgcctccag gaccaagtag cttattagat ggaggagaca aa #aaatatac 18780 agagcaataa accaacagga ttccagaggg cagcaggtgc tgggaaggac gc #ttgccaag 18840 gagacgggat agcgagtgct gggcagggcc actgtttcca ttgaacactg ca #ggcccagt 18900 gcgtggggcc cacaaaaagg ttttattttt tttaaaaaat cagaagcagg cc #aggtgcgg 18960 tggctcacgg ctgtaatccc agcactttgg gaggccgagg caggcagatc ac #ctgaggtc 19020 gatagtttga gaccagcttg gccaacacgg tgagaccctg tcaccattaa aa #atacaaaa 19080 agtagccaag tgtggtggtg cgtgcccata atcccaggta cttgggaggc tg #aggaagga 19140 gaattgcttg aacctgggag gtggaggttg cagtgagctg agattgtgcc ac #tgcagtcc 19200 agcctgggca acagagtgag actccatctc aaaaaaaaaa aaaaaaaaaa aa #aaaaaaga 19260 atataatcca acctggattt tatttatact aacacagtca taaaatagaa tt #tctagcat 19320 tttgtgtgga gaaagccacc tccgtaggca tcagtgccgg ggaccacaaa ag #tcagaatg 19380 ctgccatagt gccagggtcc tggggggttt tgagttttgt gtgggtcatc tc #tgaagagg 19440 tgacatttta gctgagacct gaacaatgaa aaggagtcag ccttgagaag at #ctgggaca 19500 gcgatctgca accttgttct taagggccgg ggtagtttca gctttgtggg cc #acatggcc 19560 tctcagccac ttgactccag tgttgccgtg tgaaagcagt catagatagt gc #acgaatga 19620 atgagcatgg ctatgttcca ataaaacttt attcataaaa acaggcaagg gg #tcagattt 19680 ggcctgcagg ccacagtttg ccaaccttgg atctaaagga agaacattct ag #gcagccgg 19740 tacagccgaa tgtaaaaatg aatgcgctta atgaatttga aggctagcat ga #ggaggcca 19800 tgtacctaga ggttggaatt gagtggacag gggcaggaga ttaggccaga aa #ggtaggca 19860 ggggctggat cttagagcac catgtaacca cggtgagaag cttggaactt ac #tctaagag 19920 ccctataaag ccattggaag gttttaagca gggaagtgac atgagtttct at #tttatttt 19980 atatattttt gagacagggt ctcaccctgt cgcccaggct ggagtgcagt gg #tgggatca 20040 cagctcactg cggcctcaag tgatcctcct gcctcagcct tccaaagtgc tg #ggattata 20100 ggcgtgagtc tctgcaccca gctgacatga tgtttctagt tcactgagta cc #acctacta 20160 agtggcagat gctgagttgg tgcttttgaa atataggaca tagaaatgag ga #cagaagtg 20220 ggcagtgtca aatcttacag gacctaaaat attaggggtc agccaactat gg #cccacagg 20280 ccacagatct ggccccctgc gtgtttttat gaataaagtt ttattggcac gc #agccacat 20340 ctgttcattt tcctgttgtc tctggcagct ttcacactat aaatacagca ga #gatgcgta 20400 gttgtaacag aaagcatatg gcctgcagag cctcaagtat ttactatctg gc #ctttttca 20460 gaaaaatgtt gccaatcgtt attgtagact gtggtaagat ctttttattt ta #ctctgaat 20520 gtaatggaac agtgaatgtg aacagtcaac actgttaata ccattcacac ca #tgattgat 20580 gtggggtaga tattaaggag ctggcctcat gggaatctga cattgactag aa #atagggat 20640 tgagggtgag caaccagctg gaaggtactg caccagtcct agcaaaaagt gt #taggggcc 20700 tgacccgaag cagtgacttg cccaggtcag ttgtcccagg ggcacgaggt gc #tcacccct 20760 ccccttcccc tcatgtctgt atcccctctc cctcagggtg atcgtcttgg ac #aaaggaga 20820 aatccaggag tacggcgccc catcggacct cctgcagcag agaggtcttt tc #tacagcat 20880 ggccaaagac gccggcttgg tgtgagcccc agagctggca tatctggtca ga #actgcagg 20940 gcctatatgc cagcgcccag ggaggagtca gtacccctgg taaaccaagc ct #cccacact 21000 gaaaccaaaa cataaaaacc aaacccagac aaccaaaaca tattcaaagc ag #cagccacc 21060 gccatccggt cccctgcctg gaactggctg tgaagaccca ggagagacag ag #atgcgaac 21120 cacccaaaac acgcacaccc tgcccctggt gccctgagac agacacacag cc #tcacgccc 21180 ccaggaatgc aagtggtttc ctggtgcttc ccacggagga gttttggcag cc #agacttct 21240 ggaggaattg gttgtataga agatcctagt gaccaaattc agcctactgc ct #cggatctc 21300 tccagccgaa gtctgtggac tgcaagtctt tgagatgctt ctggctccca tc #acctctaa 21360 catccttgtc tgggtctacc aggaacgctt catttccttg gggctgcagt tt #tgtggttg 21420 aggggcctgg agaaaatcat tttctcccct tggcagtgtc ccagggccct gg #atggtcct 21480 cttaccaaca tctggtcttc caggcactca aaagctggga accagcatct ca #gcgccagc 21540 tctaccagtt ctcgttttgg gccagaggca gcctctgcac tcccacgcct gt #cctcctgg 21600 aagggacctg gttggactaa cggctaacct ggacctggaa ctgtagggcc ag #gggattgt 21660 ctcagggccg acgttccacc tggggcttcc ctccccaccc accccgactc ca #ggctttcc 21720 cttttttctt ttgttcaaca ttgtaagaac aatcaatgct gttattactg at #cccaccat 21780 gattgatgtg gggtaaatat taaggagatg gcctcatggg aatttgacct tg #actagaaa 21840 tagagactga gagtgagcaa ccagctggaa ggtactatgc cagtcctagc ag #aaaaatgt 21900 gttaggggcc tggcccaaag cagtgttggt tgcttacagt gttgattgat tt #tgttcttt 21960 tttcttacca cctcttttct ttccctctca tggtacctgc tcatggttat ga #agctttca 22020 aagtaaagaa cacgaaatac ctcccaagta ttaccagtgg gtaccaaaaa aa #tgtcccct 22080 tgagtctttt ccttgttttt agatgttaat tctctccctt ggcatccggt ta #gcccccca 22140 gggggggcag cattgtggag aacttgatat ttagttactg atgctcttcc ag #gacacgaa 22200 aagaacccat ctttgaatat caatgatttt ttttttttta agtactgttc cg #gggagaaa 22260 aacagtctca aaacttgaac ttcttgggaa gagaagtgtt gggctgagaa gt #aacattcc 22320 caggaaatag tgagaagctc gccctgtgtt tgaaaccgtg ttggtctctg tg #ttcctgga 22380 agaaaacagg gaagcagcat cttttaaagc ctgttcttta aggtgtctcg tt #agagccca 22440 aagtggaatc cggaaggcag ccagagctga ggctgcccca agactcagac tt #gctaagaa 22500 ttacgccgcc gacttcaaac ccagagagca tctttctttt aggcgaaaac gc #atatattt 22560 attttttgta agttatacca ttctttcaca ttagataaac taagttttgg gg #gatccttt 22620 tgtaatgact tacactggaa atgcgaacat ttgcagtaaa aaaatatata ta #tatctata 22680 tattttattt ctttctaaag aatggttccc tttcctttgg ggcctcggcg ag #ggttccag 22740 ccatgtcctc tgcagggtca ggatgtggca tcttcctgtt tctgttcttt cc #ttttgaca 22800 acaagtcgcc tctagtggga gctgttgcca gaaagggcaa gttgtagaga tc #actagtca 22860 gatggggttt agtgggaagg cgggacagcc gcaaggtgga cggagcccag gt #tttggggt 22920 tggacagacc ctggcttgag tcctgctctt gtcatttgct gttcttgtga cc #ctggggaa 22980 gtcactcagc ctctgtgcct cacttgcttt gtctgtaaaa tgaggctgat cg #tacttacc 23040 ctgtgagcag tgatgtgtgc ggtactcgta gcctcggtca ggttctaaga ca #caggcgag 23100 gcagaaatca catgtggcca gaacgatcct tgaaaatcct gccctcgccc tg #cccttttt 23160 tttttttttt tttttttttt ttttttttgc tagaggcacg gtctcactct gt #tgcccagg 23220 ctggtgtgca gtggcacgat catagctcac tgcagcctca aactcctggg ct #tacgcaat 23280 cttcctgcct cagcctcctg ggtagctggg actacaggca tgtgcccagc ta #atttttaa 23340 aaatttttat agagtcaggg tcttgctatg ttacccaggt tgttcttaaa ct #cctgggct 23400 ctggggatcc tcctgcctga gcctcccaaa gtgctggggt tcaggcacct gg #cctgaaaa 23460 tccctttatg ttagtccaga gaggcgaggc tgcgctgcag taacaaattc gc #cgtaaaat 23520 cttcggaaat gatcacaagg ctttatttct tgctcacgca gttcttggtg ag #ggtcagct 23580 gcctctccag ggtaggtgac ttccctgtga caagtgatcc aggctgtcct gg #ttttgtga 23640 catggcctcc caagggttgg cctccaggtc cccacagtgg gagaagggag ag #tggacgac 23700 tctcacccac tcttctgtgt ctgaaaccgg aactgacgca gttaatccca ct #cacagccc 23760 attggccaaa atgagtcaca tggccccaac ccaaccactg cgggagctgg ga #aatggagc 23820 ggtgcctgtg gaagagaagg atttctccct ttcctaactg atgtggttct gg #agttttgg 23880 atagcggagt agtcagacta gtgtgttcgg tttctaactt cgaactgggt ga #gtctgggc 23940 agtaaggaat gtctgtattt ggggagcaca ccatttctgc cacacctaaa ac #catgcacc 24000 aagtacatgt gcagatagaa cgttctagca ctgccattgt tccctcaagc tt #tcctgtcc 24060 cctgattgaa attgttggct tgcactaggg actgtggtgt acaaaggtgc tc #agggaaga 24120 gccggcgagg tggtgaccat tagaatgagt agtagtgtct gggtgcagtg ac #tcatgccc 24180 cattgaaact gttggcttgc attagggact gcagagtgtg aaggtgccta gt #gaaaagcc 24240 agtaaggtca taaccattag aataggtagt atcagccagc cgggcatggt gg #ctcatgcc 24300 tgaatgatgt cattggcttg cattaggaac cacagagtat gaaggtgccc ag #tgaaaaac 24360 tggtgacgtt gtgactatta gaattagcag tattggctag acgaggtggc tc #atgcctgt 24420 aatcccagca ctttgagagg ctgagacagg aggactgctt gagctgaaga gt #tcaaaacc 24480 agcctaggca acatagtgga actctttcta tataaaaact ttttttttgt ta #aattagaa 24540 gtagttgagg ctgggtgcag tggctgacgc ctgtaatccc aggactttgg ga #ggctgagg 24600 cgggtggatt gcctgaggtc aggagttcaa gaccagcctg atcaacatgg tg #aaaccccg 24660 tctctactaa aaacacaaaa attagttggg catggtggca catgcctgta gt #cccagcta 24720 ctggggaggc tgacaagaga attgcttgaa tgtgggagat aaaggttgca gt #gggctgaa 24780 atcaagtcat tgcactccag cctgggcaac agagcaagcc gagactccat tt #caaaagag 24840 tagtagttgg atctaccagc gggaatctta atagggatgt gagatgtgtt ta #gatctcaa 24900 agcctgaccc tgagtcttaa aatcccaggt cagatcctaa gcagtcccag ag #agctccac 24960 ctggtgtgca tctgtgccag tgtcttgggg tggggcagct gcatgctcag gt #ggaatccg 25020 gggctgagtt caagtttaat ccactttatg aagaggaggc agagtgaggc at #aactcctc 25080 atccagggga gtggaagtac tgtggaagga agctctgttt tgtacctact ac #gtgctggc 25140 cctggcctca ctgtgcagaa ctctccacat tggaaaggat ccccccagac ca #gagaggcg 25200 taaggagggg gctggtgctt tccagtgttg aactgttcat ctgtcctcac ac #ccaccatc 25260 gggtcctaca gcaaatttgt ttgattttct gcaaaacacc cagaatctat cc #actccccg 25320 tcctcccatt gccaccacgc tggtcccagc caccccactt tctccctgca tc #cctacaac 25380 agctgccaca gtggtctcga ggcttttgcc cccagccccc cacacacaca tc #agtgtcct 25440 caacctggtg gctgtagtga ccttatgaaa acacgcactg gccgggcacg gt #ggctcacg 25500 cctgtcatcc cagcactttg ggaggccgag gcaggcagat cacctgaggt ca #ggagttcg 25560 agaccagcct ggccaacatg gtgaaatcct gtctctacta aaaatacaaa aa #ttagccag 25620 gtgtggtggc gagtgcctgt aattccagct acttgggaga ctgaggcata ag #aattgctt 25680 gaactgggag gtggaggttg cagtgagcca agatcacgcc actgcacttc ag #cctgggtg 25740 acagagtgag tgactgatgg tgaggacacg ggctctgaag ccacactgct tg #ggcagaga 25800 tgccactcat tctgtttgtt ttctcatctg tcaaaagggc ctgatggtag ta #ccttcctc 25860 atcaaaacgt tccagtaagg ggcccagtga ggtggcttcc tcctctggtc ca #ctgaatgc 25920 gtgcgtggcg ggcatttaaa gcagtgtcag gtatacgtag ttacgtgttt gc #agtggcga 25980 ggtggactgt tgagttttaa agagtctact gggcgcaggc actgaccaga ga #ggaagtct 26040 gcagccttga tggatgaaat tcgtgttcca cccaccagcc agaccctact gg #cagcagcc 26100 catggcgggg gtattaatgg cctgggcatc ccctctggcg cgtctccaga ct #gccgtggt 26160 gtgggcccaa cagcagtctc gttagcaggc tggcaggtgc cggttcccac gt #gctggccg 26220 cctgtggccc accctctgct ccctggcaca cagcctagga aagagagtct gg #tggccctg 26280 ggtcatcccc agctgagttt gccaaatgcc cacatggcag cccctgccta gg #gtcactct 26340 gcaaggcagg tggctcagct ccagccagag aagacaggct gcatctgccg cc #cttccttt 26400 ctctaaagga caaatgtgcc ctgtgcaatg actttggtat tacacccaga aa #cagatccc 26460 cactctgtcc ttactgactg ggtcaacttg gcaagtcatg tcaacccctt ga #gcctcagt 26520 ttcctcacct gtgaaatgga gctaggaata ggtagttgtg ggtccacagc tt #tgcaggca 26580 tgactagggg caggtcaaga atgcggactt cctgccccac tttgaaggtg gt #agaagctg 26640 cagttagaag tttactccag gccaaaaggg gcatcacaaa acctgtgagg at #gggccatc 26700 agaaagtccc atgacctgat gggcggagca ggccctgtgt ccttaagaaa ag #gtggagtt 26760 cttgccctgc cacccctgac accagcaaag ccactgctca agtatctgtg ga #tgatggat 26820 ggcagcgggg caggttagac cggggattct caaccaagtg ggtctttttg tt #ttgtgttt 26880 tttcagacag tcttgctctg tcacccagcc tggagtgcag tggtgtgatc tt #ggctcact 26940 gcaaccttct ctgcctgggt tcaggcgatt ctcctgcctc agccttcaga gt #agctggga 27000 ttataggcac ctgctaccac acccggctaa tttttgtatg tctggtagag cc #aggggttc 27060 accttgttgt ccaggctggt ctcgaactcc tgacctcaag tgattcacct gc #ctccgcct 27120 cccaaagcac tgggattaca ggcatgagcc actgcacccg gcccaactag gt #ggctttga 27180 ccccctgggg gattaatggc agtgtcacaa gtctggtggc ggtagaagga gg #atgttatt 27240 ggcatctagt gaagaagagg ccaggggcgc tgctgaacgt cctacgatgt gc #aggacatg 27300 tccccacagc acagaactat ctggccccac gtgtcaataa ggttcagaaa gc #ctggggga 27360 ttgccttctg tgcttccacg aacacatatc catgtattat gtcattcttg cg #gcaatgcc 27420 acgaggtcag tgagactccc tgactagcat acataatgtt aggatctagg ga #gttgtcta 27480 atgtctcacg ctgcccttcc cagcgatcta tgtgtggcct taggcttggc ta #ctttagac 27540 ttagtccctc ttttccggtg cctgcagctg gtttggtgag tccagtatta at #atactgac 27600 cgctgtcaga aagaggagtg aggaggctgg gcatgatggt tcacgcctgt aa #tcccagca 27660 cttttggagg ccgaggtggg cagatcacct gaggtcagga gttcaagacc aa #cctggcca 27720 acatggtgaa accccgtctc tagtaaaaat acaaaaataa ttagccaggt gt #ggtggtgg 27780 gtgcctataa tcccagctac ccggcaggct gtagcaggag aatcgcttga ac #ctgggagg 27840 cagaggttgc agtgagccga gatcttgcca ctgcacttta gcctaggtga ca #gagtaaga 27900 ctctgtctca aaaaacaaaa aaagaaatgt gtgaggaatg caacaagctg tg #cattgacc 27960 acccttggtt acagcaagtt ctccacgctc agccgggtcc agcctttggc tg #tcagcagc 28020 atctggagcg gaactgtgaa cagaaacact ccaggtgttc cgacgggtgc tg #gggcgccc 28080 ccagggagct ggaatttggt ttttagcaac cacatatagg aaatgaaccc gc #cagccaca 28140 gtatctcacg cctgtaatcc cagcactttg ggaagctaag gccagcggat ca #cctgaggt 28200 caggagtttg agaccagcct ggccaacatg gtgaaacccc gtctctacta aa #aatacaaa 28260 aatcagctgg gcgtggtggt gggcgcctgt aatcccagct gctccagagg ct #gaggtggg 28320 agaatcgctt gagcccggga ggtggaggtt gcagtgagtc aagattgcac cc #ctgcactc 28380 cggcttgggt gacagagtga gactttgtct cggacaaaaa aaaaaaaaaa aa #aaaaagaa 28440 ccaagtcctc gggcaaattc tcccattgag ggctgtgaag tcttggctcc tc #tgttgttt 28500 gttttggaaa ccaaacttgc atatttgact ttctcatgcg tggagaggac cc #atgcttgg 28560 catggggggg cacctggttt ttgtgtcctt ggagctcatc tctggtgggg ga #ggaggagc 28620 agcaggagat gcgagggctg tagttctcag tcctggccgc acattggaat cc #tatggggg 28680 agctttaaaa ttatacacca aactcggcca ggtgcggtag ctcacgcctg tt #atcccaac 28740 actttgggag gccgaggagg gtggatcaca tgaggccagg agttcaagac ca #gcctggcc 28800 aatatgctga aacctcgtat ctaataaaaa ttacacaagt tagccaggca tg #gtggcgca 28860 cgcctgtaat ctcagctgca cgggaggctg aggcaggaga attgcttgaa cc #caggatgt 28920 ggaggttgca gtgagctgag attgagccac tgcacttcag cctgagcaac ag #agtgagac 28980 tctgtctcaa aaaaaaaaaa aaaaaaaaat acacacacac acacacacac ac #acacacac 29040 acaactggag aacagagcat ggtcactggg ggcaggagcg agagtgatgg gt #gtggtcgg 29100 aaaatggtgg tggctattcc gtatcctcac cctggtgtgg attcatgagc ct #acatgtgt 29160 gataaaactg catgggacaa aataaacaca cacacacaca ggagtacagg ta #aaacggga 29220 aatcgagcaa gattgttgtg tcaatgtcaa caccctggct gtgatgcttt at #cctagagt 29280 tttgcaagat gttaccattg ggtgaaatgg ggtaccaagt acacgaatct ct #ctatatta 29340 ttgtttcttt aactgcatgt gagtctggga ttatcccaaa ataaaagtgt ta #atttgtaa 29400 aaagtacaca cagcatggca gttcccagcc tcagagattc tgatttaagg gt #ctagccgg 29460 gagcctgggc atgtgcttga ggcccccagg tgagtccaga gtacagcggg gc #tgagagtc 29520 gctgttgaca ttggctgcag ggtggacagg gcgagatggg ccctgcccgg gc #agacctgt 29580 gtattgctag gtccttccgg ctctgatgct ctgtgataat tggccacttt ct #ctgccatt 29640 ttcctcccag agagcaaaca caggtctaga ctcaatatcg tgtggagcta tc #gatgacca 29700 cgggtcactt ccatctccag cactgcaggc tgtgcgggct ggtccaactg gg #gtacggtt 29760 gagggtcctg gctcagacca ggcctgactc ctgggccagt ctgtaaaaca gg #cccttctg 29820 ggccagcagc tgggccgggc tgccgctctc tgccacctgc cccttgtcca tg #accagaac 29880 cctgtggggg agagggagac agagaggctc tctggacacc agcccaggct ct #cggcagct 29940 gtgagagccc agtgtgtctg cgctgaggtt ttctccatag aagtcctgct tt #ccatgcgg 30000 ctccctggcc ctcacagctg ggttggaagc gtgtgctggg cgcatgtcct tg #ggcagctt 30060 tcccacttgg catgtgttcc cgggcattcc tcccgctctg gccccattca gg #acccctcc 30120 agctctaacc cgaagcccag tggcccagga ctgcctccgc ctccttcccc ca #ccactgca 30180 gggctgctgt gaggtcaggc cggggcggga gccttaccgg gcacagtcca tc #acggagcg 30240 caggcggtgg gcaatgagca gcacagtgca ctgtgcaaac cagctcccga gc #atggcctg 30300 catctgcagc tccgtgccag ggtccacggc agcagtagcc tcgtccagga tg #aggatctg 30360 ggtcttccgg agaagggcac gtgccagaca caggagctgt ttctggccca cg #ctgggaac 30420 gattgggaca attagctggg acgtgcgttt gtcggcacat ggtgatgtgt gg #gtgtgccc 30480 agaaacaggt ccctgaagca gtgcaggagt gaggtgcctg tgttcaggca tc #cccacaca 30540 tggggtctgg ggtctgtggt ctgcagaact gataggaagc ctgttcctgc ca #tctttgag 30600 caggctgact gtaggcaggt cattcaaacc ctttgtgcct cagtttcccc ac #ctgtgaaa 30660 tggctatttt cttttttctg tttatggctc tttttttctt cttcgttttt ct #tttttttt 30720 ttgagacgga gtcttgctct gccacccagg ctggcgtgca atggcacaat ct #cagctcgc 30780 tgcaacttct gcctcccggt tcaagcagtt ttcctgcctc agcctcccaa gt #agctggaa 30840 ttacagtcat gcgccaccat gcctggcttt tgtattttta aagtagagat gg #ggtttcac 30900 catgttggtc cgacttgttt gaaactctca ggtgatccac ctacctcagc ct #cccaaagt 30960 gctgggatta caggcgtgag ccactgcgcc ccggtagttc tatttctagt tt #gttttttg 31020 agaaatcatc atactatttt ccatagtgac tgtactaatt tatatttccc cc #aacagcga 31080 aagcacagct ttcacttcag tcatgccgtt gcaaacaaac ctacaatgac tc #actgctgc 31140 ttcaagaatc aaatctacag tcttcctaag acattcaagg ctggtgtcac gt #gggcctta 31200 aatacagatg tgtacaacac ctgggtggga ttccaggcgt gatccaccgt gc #ctggcctg 31260 tttatggcta tgtccagttc tatttctagt ttccaccttg tgccaaacac at #tctaagtg 31320 cttgtatata ttcactcaat cctcataatg tccaccaagg tagatattat tg #ttctcttc 31380 ttttgagaga agaggacaca gatacagaga agctcagtgg cttgaccaag gt #ctcaaggc 31440 tagtggtggg tccataattt gaacccaagt cctctgaccc cagagtctgt gc #tcctaatg 31500 gatccgtcct cgctgaatcg tgacgacatg gcacataaaa gtgtgtgggt gg #cggggcac 31560 ggcggctcac acctgtaatc ccagcacttt gggaggctga ggtgggcgga tc #acgagatc 31620 aggagatcga gaccatcctg gctaacacgg tgaaaccctg tatgtactaa aa #atacaaaa 31680 aattagccgg gcgtggtggc gggcgcttgt agtcccaggt actcaggagg ct #gaggcaga 31740 agaatggtgt gaacccggga ggcagagctt gcaagtgagc caagatcgcg cc #actgcact 31800 ccagcctggg cgacagagca agactctgtc tcaaaaaaaa aaaaaaaaaa aa #aaaaaagt 31860 gtgtaggctt gtcacagaat aagcccttgg catggagtag cacccttcgt gg #agggtgga 31920 ggagttgaga ttccaggttg tgagcccagt gagcccctga cccaggtggg aa #ctgacccc 31980 tggggcccca gcatggctgt cttgcacagt aagcccttcc atgaaacagc at #ccttttac 32040 atgatcagaa cctactatgg tcatgcaggc gttagagtgc ctgggtcttg tc #ccaacctc 32100 actactttta agctgtgtga cgtcaggcaa gccccaggcc tccaattcca ac #tctgtgaa 32160 atgatgttat caggagtgtg actcaggact aaaatgagta tttactcttt gc #tctatgcc 32220 tgccactgtt tcaacaactt tgtgcatata attcaatcct tgcaaggtag gt #aggtgcta 32280 ttattcccac cttacagatg aggaaactga ggcacacaag ataagttgcc ta #agatccta 32340 cagctagtaa gtggcagggc ggggcggggg tgggggtgtg gggtgggggg cc #tggatttg 32400 agcccaggca gtctgtcacc tgtgtatact cttacccacc aagcaacgct gc #ctctctag 32460 tgctggaaat tattgcctac cacaagccct tcggacaccc tcagggtcag ag #gggtttat 32520 aaatccagaa caccttaggt ttttttttgt tttttttgag acggagtctt ac #tctgtcac 32580 ccaggctgga gtgcagtggc acaatcttgg ctcactgaaa cctctgcctc cc #gggttcaa 32640 gcgattctcc tgtctcagtg tcttagcctc ccacgtaact gggattacag gc #gcctgccg 32700 ccacacccag ctaatttttg tatttttagt agagacgggg cttcaccata tt #ggtcaggc 32760 tggtcttgaa ctcctgacct caggtgatcc acccgcctcg gcctcccata gt #gctaggat 32820 tacaggcatg agccaccgcg cccagccact ttggtttttc taaaggcata ta #cctataca 32880 cctatgttca tagtggcatt attcaaaacg gccaagaggt ggaaacagcc tg #ggtatcta 32940 ctggcagata aacggataag caaaatgtgg tctatccatg tagtggaaaa tt #attcggcc 33000 ttaaaaaggt agagaatctg acacatgcta cgatgtggat gacccttgaa ga #catcatgc 33060 tgtgtgaaat aagccagtca caaaaggaca gatcctatga ttctgcgtct at #gcagtgtc 33120 tagagtagtc acactcagag agacaggaga atgctggtgg ctgggcgctg gg #ggagggga 33180 caaggagagt tagggtttca tgggtacaga gttgtagttc tgttgtgtaa ca #gtgtgaat 33240 gtacctaaca ctacagaaac tatacactga aaaatgggtg agatgggccc gg #cgtggctg 33300 ctcacacctg taatcccagc actttgggag gcctacgcaa gttcgactgt ag #cctgggca 33360 acatggtgaa accctgtctc tacaaaaaat aaaaagatta cctggccctg gt #ggctcaca 33420 cctgtaaccc cagctactcg ggaggctgag gtgggaggaa tgcttgagcc tg #ggaggtgg 33480 aggttgcagc gagccttgac ctcaccactg cactctagcc tgaatgacag ag #ccagaccc 33540 tgtctccaaa gaaaaagaaa aaaaaaaaaa aaggttgaga tagtaaattt ta #tgtgtatc 33600 tttccacaca gctttttgtt gttgagacga agcccaggat ggagtgcagt gg #tgcaatat 33660 cggctcactg caaccttcgc ctccctggct caagcgttct tcccacctca gc #ctcccaag 33720 taactaggac tacaggtgca tgccaccata cctggctaat actgttgtcc ac #agagatag 33780 ggtcttgcta tgttgcccag actagtctcg aactcctggg ctcaagcaat cc #tcctctct 33840 cagcctcctg aagtgctggg attacaggca tgagccactg tgcccagtcc ac #acttgaca 33900 tttaccaaaa aaaaaaatcc tatattatag tcccagtgag tggtgaggtt ac #cacccgat 33960 atcaaacaat attttcatag caaaataaat actgagcaag agcaataaag gc #tatcagta 34020 gccctgtgtc agttgaggtt gggttttgcc accaagtaaa tatagaagac ta #actgctaa 34080 tttagggggg aaaaccttgg tattcagaga ctgtgtcaga gcttggaatt gc #agataaga 34140 gacatgtggt tattaatgta acagagtgat aatcctatcg ggggaggcat tt #cctgaagg 34200 cccttgggga gggcatggcc atcccctcct ctcccacctg caggtcccag cc #atggtggg 34260 acgaccatac ctcaggtcct cgcctcggtc agcacacttg tactgcagct gg #ccgggcag 34320 gctggccacc aaggctttga gctgcaccgt ctccagggct gcccagatag cc #tcgtccga 34380 gtgctcctgc agcaggtcga ggttcatccg cagagagcca gggaacagga tg #gggtcctg 34440 gcggggaggg gcggtgggtc agagccgggt cccaccatgc ctcccatctt tg #cccacccc 34500 ctccaccagc ctcacctggg ggatgatgct gatcctggag cgcagtgtgt gc #agccccac 34560 gtgggcaatg gggaccccgt cgatccagat cccaccctca gctgcctcct gg #agccgcag 34620 cagcccactg gccagggagg acttccctgc cccggtcctg ccaacgatgc cc #acctgccc 34680 ggggttggga ggaaaggcct gctctgacca gagggtttgt gggcatttat tg #gggagatc 34740 tttctgctgt acccgagatc tgtctatcca tccctcattg tgtaaaggtc ta #ccttccat 34800 ctctctttcc atctgtctac ctttctatat atccacccat caatccatcc ag #tcttccat 34860 ctgtgttctt ctctatcttt cccttatcct gatatctctc tcccatcttt ct #ccccaccc 34920 ttcctttagt tcctccatct ttcctcatcc ttctatttac acctctccat ca #tctctcat 34980 ccttttttct accccatccc atccatctgt ctgtccgtcc atccatccct ta #tccttttt 35040 tccaccccat cctgccatcc atccatccat catccatcct caatcccatc cc #tccatctc 35100 tcttccaccc cattccattc atccatccat tcatctgtct atccgtctct cg #tttcttct 35160 tccctattca tccatcaatt cactaatcct ttcattcatt tattttctcc ca #tccatcca 35220 tccagtccat ccttccctca tccatccttc cattcatcct ccatcttatc ca #tgtgtcca 35280 ttctgttatc catctcccat gctgttatcc accctccatc cttatctctc tt #gctactat 35340 tgcatcctca gtgtctgaca catggtgtgg gttcaacatt atttgtttaa tt #aatgatgg 35400 aaacatgtgg gtcaccccac tgtatgccaa gtacctgttt aggcaccgga ag #tatagaaa 35460 ttaaagagtc cttgctccag tgtgcccatc atccggtcta ggaaacagtg ca #attgagta 35520 aatgtaatac agtgtgatga acaatgcttt atttatttat ttatttattt at #ttttgaga 35580 taaagtcttg ctctattgcc caggctggag tgcagtggtg cgatctcagc tc #actgcaac 35640 ctccacctcc caggttcaag caattctcct gcctcagcct ccctagtagc tg #ggactgca 35700 ggtgcctgtc accatgctcg gctaattttt gtatttttag tagacacggg at #ttcaccat 35760 gttggccagg ctggtctcaa acttctggcc tcaagtgatc tgcccacctt gg #cctcctaa 35820 agtgctggga ttacaggtat aagccacagc acccagccaa caatgctgtt ta #ttatcaag 35880 gtctggacct ctggcaatta agggaagcaa ggcagtgctg ctcatgctgc ct #gggatttg 35940 acagaggtaa taagagaaga cctcatggag gaagggatac ttgcatggaa gc #ttgaagga 36000 tcaataggag ttcaaggaag gggaacactc caggtaaacc acaccaagtg gg #tttccaaa 36060 actagaagct catggagctc acagcaccat gtgcccccct ggccgagagg ca #gctgctcc 36120 acaatgttgg ctaagccctg gcagagcaat gaatgagagg gggaggttgg ca #gggcctgg 36180 gttgggtaga gccttgaatg ccaagctcag gaattcacac tttaccccaa gg #gaagctgg 36240 aactagtaga aggttttgag caggggaatg acatgcagtg tcattcatgc tg #ataaaggt 36300 cacaggatgg ctgggcatgg tgggtcatgc ctgtagtccc agcactttgg ga #ggccgagg 36360 ggggtgattg aggtcagaag tttgatagca gcctggccaa catggtgaaa cc #ctgtctct 36420 actaaaaata caaaaattag ccgggtgtgg tggcaggtgc ctgtaatccc ag #ctactcag 36480 gaggctgagg caggagaatc acttgaatct gggaggcgga ggttgcagtg at #ctaaggtc 36540 acaccactgc actccagcct gggcaacaga gtgagactct gtctcaaaaa aa #aaaaaaaa 36600 aaaaaaatca caggagagca gattggagct ggtgagacag gatccactgc tt #tttagggg 36660 acaaggagag gacagggagg aagcctctgt aggttcagag ggagggagga aa #gggattca 36720 gtgaaggggc ctgatgaggc atctgtaaaa tgggatagta ctagcacctc ac #ttaggggt 36780 tgttgtgaga gtgaaaacgc aaataataaa agcattagta aacatttctg ga #gcactttc 36840 tatgagctaa gcatgttcta tgtattaact caaacttcac aacaactcag ag #atcagtat 36900 taccagtccc aatttacaga tgggaaaact gagactgagc tatgaagtgc tt #ttcccaat 36960 gtctcccagc tgaaagcaaa tatcccattt gtgcaaactg gaaaatgtac ct #ggagcatt 37020 taacacactg cccagcacat attaggtgct gggttaatgt taaaggaaga ag #gaagtcac 37080 ggagttgctt cctcatctgg ggacaccaag gtggatgagg aagtcaccag at #ggaagcag 37140 gtttggggaa ggtgaggagt tcattttagg gggtaatggg tctgaaagct ag #gggacctg 37200 aggtggggac actgtggagg tagctggtgc ccagggttta gggccttgtc cc #tggagtcc 37260 tttggcctaa actccatgaa gaagacattg tgagagaacc actcaccttc tc #tcctgcgt 37320 ggatcttgaa ggacacgccc tgcacagcca gcgggagctc aggtcggtat ct #tagcccaa 37380 agtcccggaa ctcgatctgc ccgccctgag gccagggggg ctgagctgca ca #tgtgggca 37440 gcctccaggg agcctggagc aggaggggaa actgagtcag aggagccttc ct #ctaagact 37500 tcacacaaga tggcccacct ctatcagctt cagttttctc ttccgcaaaa tg #gacgtatt 37560 tattgctgtt ttacagggtt gttatgggaa ttcaacaaga gagggcatgg ac #tatgtcaa 37620 tgctaaaaac agatggtggt ggctactttt agtctatttt attgttatta tt #agccactg 37680 tttattataa aataatctct ttttctatag tgggagcaga catttctctt tg #tctttgtg 37740 aaaggacatg actgtgcagt gggaagacca atactgcctt tgctgtgccc gt #gaccttga 37800 acagatcatt ctaccccctt gagtcttggt tttccaatct gggaaatagg gc #taataaga 37860 gcagcagaca tgtattgagt gtttgcaatg gaccaggcac tctattaaat ca #tttctttg 37920 caggatctca tttgatcctc ccagtaaact caacgctgtt atgttactgt ta #cattagtg 37980 ctatgctgct gttcttatcc tttcttccac ccaatcccat ccatccattc at #ccatccat 38040 ctcttatcct ttatccaccc catcccaccc atccatccat ccatgcatcc at #ccatccat 38100 ctccaatccc atccctccat ctctcattct tccatcccat tccatccatt ca #tctgtcca 38160 tctctcacca tttcttctac cctattcatc aactaattaa ttcttccttg tt #ctgttact 38220 gtaatgttac tgttatattg ctaacacatt atatcatgtt gctgttttgt ta #ccgttgcg 38280 ttgctatgtt gctgttctgt ccttataatg ctactgttat gttgctggaa tt #ttgccatc 38340 atgttactat aatgttgctg ttttcttact gttacattgc catgttgcta tt #ccgttact 38400 ataatttcag ttattttgct ggaatgttgc catcatgtta ctataatgtt gc #tgttttgt 38460 tactgttaca ttgttatgtt gctactctgt tactctgtta cagtcgtgtt gc #tgggatgt 38520 tgctgtcatg ttatgatgtt gctgttgtgt tactattgca ttgctatgtt gc #tgttttgt 38580 ttctatcatg ttactaaaat gttgctatta cgttactatt acattgctat gt #tgtggttg 38640 tattgctgga atgttgccat catgttacta taatgtctct attatgttac ta #ttacactg 38700 ctatgttgct attctggtac tgcaatattg tggttatgtt gctgttacat ta #ctgttaca 38760 ttgctgttgc attactctca tgttctggaa tattgccatt gtgttgctgt tg #ccattatg 38820 ttactatcat gttgcagcta tgttgctgtt gcaatgctgt tccttgtggt tc #cctgcact 38880 cccatgggtg acctgctttc ctcaagctca gaagcaaagg aaccaagatt tg #gcctggct 38940 ccaaacctta tgctcctaac cactgctgcc accctgtctg tgactctgac ct #atagtggt 39000 gggggttgag tgaggggaga agagggtata aactccaaag cctgtagcag at #gtcaacag 39060 ggacccattg ccccccccac aatatgtcct tgctgggacc ccctccccac ct #cccgccca 39120 tcacctcctt gggcgtccag gcatagtcct gcatccgctc cactgacacg at #gctgttct 39180 ctaggtctgt ccagttgcga acaacccact gcagtgtctg ggtcacctgg tg #caagaaag 39240 cctctctggc tgggtttggc aaggccactt gagggcttgc aacagccccc ct #ggtttccc 39300 aaccttttct gggaggccag acccagggga gtaaagaggg gaggcaggaa tg #ggacagtc 39360 tgaggacctg ggcccagggg attgggattt ggatacaacc aacaggtccc tc #tcttcctt 39420 cagtagaacc agagcatgca gagcaaaaag aagccctcag acatcagctt gt #acaaactg 39480 gcttgatgca ggtgagtaga caggatcaga gagggtgtgt ggccctccca ag #gacacaca 39540 gcaggaccca ggcccactga ttccattctg acggctttct cgcagcgact gg #gtggccac 39600 caatttccca tgacacttag aaccactcca agctcctccc tatgagccat ta #gcagctct 39660 agccctgcca tcccatcccc aaccttgtct cccagcaccc ctgccttcac cc #accctctc 39720 cagccacacc cgtcttcttg ctgttcctct aacacaccag ggatgaacct tc #aactccca 39780 ggccttttct tcctgctgtt aacctcactt cctcctaagt cacctcctca ga #gaggcctt 39840 tctggatgca gtaggaaagt tccctcactg ccacccaaca tgctccagcc tc #ttacttca 39900 tccttaagct tagcagcctt gactgtaaaa tgaggataat aacagtgctt ct #ctgatggg 39960 gttgtgggca gtattaagtg agttaatatt tataaaattc ttgtgcacag tg #gctcatgc 40020 ctataatccc agctttttgg aagtctaagc aggaagattg tttgaaccca gg #aattgaag 40080 gctgcagtga gctgtgatca caccactgca ctccagtctg ggcaaaagag tg #agaccttg 40140 tctcaaaaca aaacagctgg gcatggtggc tcacacctat aatctcagca tt #ttgggagg 40200 ctggggcagg cagaccactt gaacctagag tttgagacca ggttgggcaa ca #tggtgaaa 40260 ctgtttctac caaaaaaaaa aaaaaaaaaa aaaaaaaaaa attagccagg ca #tggtggtg 40320 catgcttgta gtcccagcta attgggaaag tgaggtggga gaatcccttg ag #cctggaga 40380 tggaggctga agtgagccaa gatcatgcca ctgcactcaa gcctaggcaa ca #aaatgaga 40440 tcctgtctca aacagcaaca acaacaaacc aaaacgaaca aaaacatata aa #gctcttag 40500 aataatgcct cctccataac aaatgcttat gagtgtatat atatattttt tt #cgtagatg 40560 tcatgaactg acattacata ctgttaatag ttaacaaaaa ttagccaggc at #agtggctc 40620 acgcctgtaa ttccagcaac ttgggaggct gaggcataag aatcgcttga ac #ccaggagg 40680 cagagttctc agtgagccga gattgcacca ctgcactcca gcctgagtaa aa #gagagaga 40740 ctctgtcttc aaaacaaaac aaaagttaac aatgcactag aaatgtcctc ca #caggatat 40800 gctttgtctc aactagtctt tataacatca gaagtagtgg gatttctggc ct #gtctttcc 40860 aaggagcaca ctgacactcc acaaggaaag actcttgccc aaggttgcaa gt #tcacctta 40920 gctgagtctg gctcttgtag agctgcgtgt ccctccttgg tggagggact cc #acacacca 40980 tggtggtttg gacacagggt cttcaaaggt cccactagca ggggtccgac ag #tctctgcc 41040 tctgtctgtc cctcaagccc agtttgggga tgtggggagt acctggaggg ca #gcagagac 41100 agagaagccc acgaggccag cactgaggtg ggctttgctc agcacagcac ac #gtggcagc 41160 tgcaaacacc aggccattcc ccaggagctc cacattggcc gcaagccacc tg #caaaggga 41220 agcgacagca gggtgagtgg ttactctcat ctgcagggag atgcttctct gg #gcacaagg 41280 actggtcatc acaccagctt tgtacacaca ggggtcccag caatggcctc ca #catgcaac 41340 ccaggctcag ggagtagagg aagatgacac cgtcctgtct caactaagcc ca #ctttaggg 41400 tctggggtac actcggtgtt ctgaagagca tccctgtgtg gctgcttttc tg #tccctgga 41460 atttgccaag ccatgtccac ctgccattcc cctggcctga accatggcct cc #atggtttg 41520 gctctgtgtc cccacccaaa tctcatctca aattgtaatc cccacatgtg ga #gggaggga 41580 tctggtggga ggtgactgga tcatgggggc agttttcccc atattgttct cg #agatagtg 41640 agttctcaca agatcatatg gcgtaaaagg atgcggcagt tcccacctca tg #ctctccct 41700 ctcctgctgc catgtaagac gtgccttgct tccctttcca ccatgattgt aa #gtttcctg 41760 aggcctcccc agccacgtgg aactgagtca attaaacctt cctttcttta ta #aattactc 41820 agtctcaggt agttcttttt agcagtgtga agatggacta atacacagcc cc #agctggct 41880 ggggacctga gatgaaagga aaaaggactt cacatgtatt gagcacctag tg #tgtacttg 41940 accctctcca cactctggta ccagactgct tggattcaaa tcctggctct gc #cagtatta 42000 gctgtgagac cctggacaag tttccaaacc tcactgtgcc taggatttat ca #tctataga 42060 acagtttctt cctggtgaag ctgttagcag aattaaataa attaatctac at #agattgct 42120 cagaacagtg ccaggcatgc agtaagcatg ttacaggtct tacctatgag tg #tctgtatt 42180 taatcctcat atccactcca tgagcacgat cccagtttga caaatgaggc tc #agagaggt 42240 tatgtaactt gcctgaaatc aaccagctgg taagtggcag agctgggatt tg #aacctgtg 42300 tctatttgtg cttaaagctt gtgttcttgt tcttgcttag tacctaaaga tg #gctgagga 42360 tgcttatatg gctgctttat caccaaggca aaagaggttg atccagttgc ct #ggcaacag 42420 aagcttcttc ctgtaccccc cgcccacctg ctgttgagaa tctctcggtc at #gttccatc 42480 tgcccacggt gagaactgat agactgcctg tgggatctag cctcaactat gt #ccctgact 42540 ctctgggtga cctcgctacc atacaatatg acctcaggtc tcaccctcta ag #gatatgga 42600 tgaattgcaa ggtcttctct gccctggctc ttcctacctg tcagccacca gt #cgcgggaa 42660 actgatcctc tggctttcat ctacgcgagc attgttctga gccacaaagg gg #gcctgggt 42720 tcggaatgcc cggaccactg tgctgccctg gaacgtctca gccatgtggg ag #cagacaga 42780 cgagtagctg gctgactcca agcgtctcag ctggcatgag ctaaccacat ac #aggctctg 42840 agaaggatgg atgggagagg gaagaggaga agccacagac atagagaggt ag #tttccaga 42900 agcacagaga gccccaagta caggattcca gaccaggatc tgttaacagc tt #actgtgtg 42960 accttgggct agttgcttgc cctctctggg ttctcatttc cttgcagaat ca #gagttcta 43020 tggttttttt gaaaatcacc tggggagctt caaaaacctc taatgcccca cc #ccagaatg 43080 actgaatcgg aatctctgga aatgtcacct tgactttggt gctgtttaaa ta #gccttcca 43140 gatgattcta agggacagcc agggttgaga aaccaccaat ttagtttaag tg #tctcactt 43200 cccagcactg aggccgacta cttcatttac ggctggtcag tgggagaaca aa #actgtaag 43260 gggcaatgaa ggcagttggc caagtcagtt tcactcatgt aacccaaggg tt #acatgcca 43320 ggtgatgtgc agaaaatatt cgttatttgg tttgcagctg caggttgggt gc #agctggca 43380 gacaggcagg cagggaggaa ctgaatttgc tgaacaccca actgtatgtg cc #aggctttt 43440 cacacagtgt ctcattcatt gcagagtgag cattcgcgtc attcatcagt ta #gtggtgag 43500 aacatccaag gctcggggga ttcagcagct gtcctgagtg ccacagtaag tg #atagagcc 43560 tggatttaaa cccatctttg cttgactcta aagcttgaga cagaaacagc cc #atcctcgg 43620 agtcaagtga acttagagaa gacctaggac aattgtcggg gacagtggta gc #catgggtt 43680 ttgttgtttg ttttttgaga tggagtctct ctctgtcacc caggctggag tg #cagtggtg 43740 caatctcagc tcgctgcaac ctctgcctcc cgggctcaag caatcctccc gc #ctcatcct 43800 cccaagaagc tgggattaca agcatgcgcc accacactgg ctaaattttt gt #atttttag 43860 tagacggagt ttcaccatgt tgaccaggct ggtctcgaac tcctgacctc aa #gtgatctg 43920 cccacctcag cctcccaaag tgctgtgatt agatgtgtga gccaccatgc ct #agccctag 43980 ccatggtttt tatctgacta ccatgttttc tacttctggt ttcctgtggg aa #agggctgg 44040 gttggggtgc tgtcaatcat gggacctgat cagagaggtg gtcacatgat gc #agcctagt 44100 gtatcagaat ctactatcca ttcagttact gtgacgagtt cagagatgga ca #catgatcc 44160 acaaagggcc aatcagaacc ttccctggga ttaatatatg actactgagc tg #aagaaacg 44220 ttttttgcat gttgagttgc taaggtgaga tgatatgata gctagtggcc at #aagacctg 44280 ccctggaaag agagcgtgta caaaattaga ccagaggtaa gccagtggtt cc #taaacatt 44340 tgtgtacatc agaattactt ggagggttaa ttaaaaccta gattcatggg cc #gacccaca 44400 tagtatctga ggcagtagtc ctgggctggg gcctaagaat gtactttgct aa #ctagtccc 44460 caggtgatac tactgctggt cctggggtca cactttgaga agcactgagt ga #agatatgg 44520 agagagtcac tgtgtcctga tgacaactgg gcccatgccc ccaaggaaat at #aagccatt 44580 aaattctatt cttttggtta agctaatttt agttggtcgc tggtcccagc aa #ttgaaaga 44640 atctagcttc atataatagc ctttgagacc ttgcaatgcc tttttggctt cc #agataatt 44700 ggagaggaag aaattacggc aggataaaaa cattacgcgt gaaaggctct gg #cccttaat 44760 atttaactgt gccgtggggc acaggggctc atgccctgta atcccagaac tt #tgggaggc 44820 caaggtggga ggatcacttg gggccaggaa ttcgagacca gcctgggcaa ca #caggaaga 44880 cacttgtcct acaaaaataa atttaaaaat tagccagtca tggtggcacg tg #cctgtagt 44940 cccagctact tgagaggctg aggtaggagg atcacctgaa cccaggagtt ca #aggctgca 45000 gggagctatg atcacctatt gcacttcagc cttggcagga gagcaagatt ct #gtctctct 45060 aaaaaaaaga actttgatgt gaacatttag agacagacac tagtggagat ac #cagaaaga 45120 ctgtagtgtc cctgtccctg ggaattctag gaacagcccc tagatgtcca gc #tgggtgaa 45180 acctcatata tggagtcttc cccagagaca ggggactggc tgagttgacc tc #agccggtc 45240 ccggaagcct ccctgacctc tccgtacctg aaacccagcg tagaggagaa ac #agtggcag 45300 gatggccaca gtggccagtg gggtagccac tgccaccacc aggctgacct cc #aggagtcc 45360 aaaggcgtac atcagcaggg accggagttt gtctggaatg tccacgtcaa cc #gtgtctgt 45420 ctccttggag aagcggttta gcaggtgacc aatgggtgtc cgctcaaaga ag #ctgatggg 45480 agatcgcacc acatcccaca ggagcctctg gaagagcaac ctggatgccc gg #gccccacc 45540 taggagcacc gcagccatgg aggcaaacag cccaatggct ggggagggag ag #gaggtaag 45600 agcatgaggg ctggagaccc tcaggagcgg cccacggggc cctgcgcagg tc #tctcccgc 45660 taccccatgg tggacatctt atggcttggc caccctgatt attatatttt tt #tgagacag 45720 ggtctcactc tgtcacccat gttgaagtgc agtagcatga tgatggctca gt #gcagcctt 45780 gacctcctgc actcaagcga tcctcctgcc tcaccctccg agtagctggg ac #cacaggtg 45840 tacgccacca tgccggctaa tttggggtat ttttgtagag atgggatctt gc #tatgctgt 45900 ccaggctggt ctcgaactcc tgggatcaag tgatctgcct gccttggcct cc #caaagtgc 45960 tgagatgaca ggcatgagcc actgcgcctg taccctgctt gtttcttgat gt #aatgggtt 46020 gaagagtgtc ccccaaaatt catttgggat gggtcctaaa ttcagtgact gc #catttata 46080 taagaatact agaggatact cagagacaca gcaggagata tgaagatggt ga #cacagatg 46140 ggagggtgta tctacaagcc aaggaatgcc agcgactgcc ggcgaccacc ag #aaaccagg 46200 agagaagcct ggggtgtatt ctccatcaga gcctccacga ggggccgggc ac #agtggctc 46260 atgcctgtaa tcacagcact ttgggaggcc aaggcgggtg gatcacctga gg #tcaggagt 46320 tcgagaccag cctgagcaac acggtgaaac cctactaaac cctactctct ac #taaaaata 46380 caaaaattag ctgggcgtgg tggcaggcac ctgtagtcct agctactcag ga #ggcttagt 46440 caggagaaac actggaaccc aggaggcaga ggttgcagtg agccataagc cg #agatcgtg 46500 ctactgcact ccagcctggt tgacagagca agactccgtc tcagaaaaaa ca #aacaaaca 46560 aacaaacaaa aaaaccaaaa aaacctccac aaagagttaa cactgctgac ac #cttgattt 46620 tagacttcag gcctcagaac tgcgacagaa caaatttcaa ttgtgctggg ct #cccaagtt 46680 tgtggcaact tgtttggcag tagccctgtg agagaaatgc acatccttcc tc #ccagtgct 46740 aatctgtatg cctggggtgg ggctaacttc tcctctgggg tggggcaaat tt #catccatg 46800 gccaatccaa accactgcag ttggttcagg gatgaacaca taacccaagt ca #ggccaatg 46860 acagggagac ctgggacttc actagaactt ttggaaaagt ggtacttggt tg #ttggaggt 46920 agccaagctg gagctgtgga atatcatctt actgccaggg gcagcagcta ag #ctggacag 46980 gaagctgtca cagaggaggg aaataaagcg atttcttgtt tggaccccta ca #tccagcca 47040 tacctgaagc cagaaatcta gggatactgg tcccaagagc caatcaattc tc #ttgttgct 47100 taaacacttt gaattggagc tgaatttgtt tattttcaga cggagtcctg ct #ctgtcacc 47160 caggctggag tgcagtggtg caatctctgc tcactgcaaa ctccacctcc ca #ggttcaag 47220 cgattctcct tcctcagcct cccaagtagc tgggattaca aacactgaca cc #atgcctgg 47280 ctaatttttg tatttttagt agagacgggg tttcaccatg ttcgccaggc tg #atcttgaa 47340 ctcctgacct caagtgatcc acccgcctcg gcctcccaaa gtgctgggat ta #caggcatg 47400 agccactgta tctggcctgg agctgaattt tttattcttt gtattcgaga gt #cataacca 47460 atttctctct ctcagctccc atctctccat ctttagggga gagtaagact tg #cccttagc 47520 tatcaaatga gggatggaag tggaaggatt ttgaaagggc tatttgccac cc #aaatgagg 47580 atttgggtta attccagggc tcggctgact ctgagaatcc ctaatttcct ct #tggttaag 47640 taaccattcg ccttgagtat tccactgtac atgcagttgt ggtgagtagg tg #tacaggtt 47700 cttaggacta gaagagtcct caagttcagg cctggcgccc cctattttac ag #gggaggtc 47760 acaggctcac agcattttgg tgatgtggcc aatgtcaccc agtgaatgag ga #cgaatcaa 47820 catgaaaacg aggcaactgt cctttaaaga tgaagccagg ccgggcgtgg tg #gctcatgc 47880 ctgtgatccc aacactttgg gagtttgagg cggaggattg cctgagccca gg #agtttgag 47940 accaggccgg gcctggtggc tcatgcctgt gatcccaaca ctttgggagg tt #gaggcgga 48000 ggattgcctg agcccaggag tttgagacca gcctgggcaa cacggcgaaa ct #gtctctat 48060 caaaaacaaa aattagccag catggtggca tgtgcatgta gtcccagcta ct #cgggaggc 48120 tgaggtggga ggattgcttg agcccaggag gcagaggttg cagtgagccg ag #ttcgtgcc 48180 actgcattcc agcctgggtg acaaagccag acccagtcta tatatatgtg tg #tgtgtgta 48240 taaataagaa gccaaactca catgtgcact cctgttactc ccttcagcca gg #ccacgtat 48300 taaaaggaga agaaccaggg gttggggaca gggtgggcga ggcaggagaa gg #gtgggtgt 48360 ggttgcaaaa gggcaacacg agagcgcctc gtggtgacgg tgttgttcag ta #tctcaact 48420 gtcaaccatc gtgatggatg cgagagactg aacaggggat acgactgcac ag #aggcaaac 48480 atgcgcacac ccacgtgcaa gcaaaactgg ggaaatcaca atgagatcca ta #gggccggg 48540 tgcgggggct cacacctgta atcccaacac tctgggaggc cgaggcgggc ag #atcatttg 48600 aggtcaggag tttgagacca gcttggccaa catggtgaaa ccccatctct ac #taaaaata 48660 caaaaattaa ccaggctgca cacttgtaat cccagcttcc agctactcag ga #agctgagg 48720 taggagaact gcttgaacct cggagatggg ggttgcagtg agccgagacg gc #agcactgc 48780 cctccagccc gggcaacaga gcaagactct gtctcaaaat aaaataaaca aa #taaataaa 48840 taaataaata attgagatcc atggattgat gggtgtcagg atcctttgtg tg #atacttta 48900 ctatcagttt gcaaaatatc accaatggga gaaactgggc agactgttca ag #gtagctgg 48960 ctgccttatt tcctagaact gcatgtgaat ctacaattat ttcaagaaga ag #tctttcca 49020 tttttgacga ggagaagaag gagtgatagc ggtgatgcat ttgttaggga gg #gtctggct 49080 ctgtctggag gtttgggggc aggcactgaa agccaccagc aggcaggcct tg #cagacgcc 49140 ttccgctagt ggggagggac tgggagaggt tctgaagctt ccagaaaagg ag #ggatgtgc 49200 cctgtccttc ccgttccctc cagcctcatc ttaaggacac agatctttgc ct #ggacccca 49260 gacgttttgc acactgttcc agggggacag ggtgacccag ggaggggtgg gg #taaaggag 49320 tcctgagcac cccttggtgc agctgggagg agagggatga ggagggcagg tg #aggcgtac 49380 cttggagaca gccgaggagc ccgaagatcc cgccacgcag ggctgcctgc gt #ctgctgcc 49440 cacctactgc agggtcgtcc gcccacaggc tcagccagta gccccggcag aa #ggaggcca 49500 cttgctggca gaggaagagg aagagtgcgt agaggcagag gggggtgccc ac #ggcacgca 49560 ggtaggccag gtgcactgtg gccttcacct gtagcacaca tgagggagag gg #aggcagag 49620 agagccccca gtgggagggg tgggttgagg caaggccagg cgaggctccc ag #aaaacatg 49680 cccatggcag atgggaccac cacgcagacc tcaccggttc tcccgctgtg cc #tcccacca 49740 ggagcaccat ttccccgaca ggccccagcc agccttagaa cccccatctc ct #atacaatc 49800 cccagggagc tagtattaat attttttctt ttcttttttt ttttttgagg ac #agggtctt 49860 gctttgtcgc ccatgtcacc caggctggag tacactggca tgatcatggc tc #actgcagc 49920 cttgaactcc taggctcaag taatcccccc gcctcagcct cccgagtagt ca #ggactaga 49980 ggtttgtacc accatgtttt gttaattttc atagttttaa agagatggag tc #tcgctgtg 50040 ttgcccaggc tagtctcaga ctcctggcct caagcgatcc tccctcctcg gc #cttccaaa 50100 gtgcttggat tacaggtgtg agccaccaca cccagctaga agggttttct tg #aacaccca 50160 ccataggtca ggcatgtgtc tctccttata acaacctcca tttcacagat aa #ggaaactg 50220 aggcacagag aggttcagcc actggcttaa ggtcctgctc ctacaaatct ga #agttctct 50280 gcacagctgc agccaggcgg gactgttgaa aacattaatc taattatatc tt #gtcgttgg 50340 cctgtccatg gctatctctt gctcttagaa gaaatcccag ccaggagggg tg #gctcatac 50400 ctgtaagcac tttgggaggc caaggcgggt gtgtcacctg agctcaggag tt #tgagacca 50460 gcctggacca acgtagtgaa accccgtctc tactaaaaat acaaaaatta gc #cacgtgtg 50520 gtggcaggca cctgtagtcc cagctactcg agaggctaag gcaagagaat cg #tttgaagc 50580 caggaggtgg aggttgcagt gagctgagat tgcgccatta cactcttctc tg #ggcgacaa 50640 gagcgaaact ctgtctcaaa aaaaaaaaaa aaaaaaaaaa aaaaagaaag aa #agaaagaa 50700 agaaagaaat tccaagcttc ttatctcgcc cccactcact gcctgccagc ct #catgggac 50760 ccctttctct ggcaccctaa gctacttccc acctcggagc cattgcacct gc #tgctctct 50820 ctgcctggag cgctctttct cctgcccttt gtatgattga ttccttcaca ca #ttctttgg 50880 ggaagctcaa atgtcacttc tcagagcatc ctgtccatac caaccatggt at #ggtttctc 50940 agtggtctct atttcatcat tctttctttt aagaggcagg gtctcactct gt #cacccagg 51000 ctggattgca gtgacatgat catagctcac tgcagcctcg aactcctggc ct #caagcaat 51060 cctcctgcct cagcctctga aagtgttggg attacaggca tgagccactg cg #cctgatca 51120 ttcttatttt ctttatagca cttattgtta ttggacatag cttacttatt ag #cataatta 51180 tttactctcc gtctatcctc actagtgtct aatctctacc agacttagcc tg #gcacatag 51240 tgggtattgt gtacatgttt gctggatgga tgaggagggt aggtgggtga at #aaatgagc 51300 gggtgggtag gtaggtaggt gtgtgaatga gtggatgaat ggatggaaag at #caatgaat 51360 ggatgaacag ctgaacagac agatgcatag gtgagggaat ggttggatgt at #tgttaggt 51420 gggatagatg gatgggtaag agaatgggat ggataaatga gtaggtgggt ga #gtggatgg 51480 gttggacaga taaatgagtg ggtgggatag atggataaat gagtggatgg ga #tggacaga 51540 taaatgagtg cctgggatgg atggataaat gagtgggtgg ggatggataa at #gagttggt 51600 gggagggatg gataaatgac taggtgggat ggatggataa atgaatgggt gg #gtgggtgg 51660 catggataaa tgagtgggtg ggatggataa atgagtggtt gggtgggtgg ga #tggataaa 51720 taagtggatg ggatggataa atgggagggt gggatggata aatgagtagg tg #ggatgcat 51780 aaatgagtgg gatggataaa tgagtgggtg ggatggctaa atgagtggnn nn #nnnnnnnn 51840 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnngtaggtg aatggatggg at #ggataaat 51900 gagtgggtgg gatggatagg tgggtgggtg gatgagcatc taggtggatg at #ggaatggg 51960 taagtaggtg ggtggagata catagcagta tagaagatga gaaacagtgt aa #gcttcaga 52020 ctcagattgg cctagatttg agtcccaggt tgtgtcccag gctagatatg aa #aacacaaa 52080 caagtctctt aactctttaa gacttcagtt tcttggctgg gcacagtggc tc #acacctgt 52140 aaccccagca ctttgggagg cagaggccag aggatcactt gagcccagga gt #tccagacc 52200 aacctgggca acatggcaaa acccatctct actgaaaata caaacattag ct #gggcatgg 52260 tggcacacgc ctgtagtccc agctacttga gagactgagg taggaggatt gc #ttgagccc 52320 aggaggtcga ggctgccgtg agctatgatt acatcactgc ggtccagcct gg #gtgagtga 52380 gcgagccact ttctcaaaat caaaataaaa taaattttaa aagaattcag tt #tctttatg 52440 tctgaaatag acctatcata tctatttttt agggtggttg tgaggattaa ga #aaatgaac 52500 atctagaatg ctactggcac atagtaggtg ctcaagaaag gtgagtatca ct #gccaagtg 52560 ctacatttgg tgggaggact tgggcccctg gaggtggcac agtgggtggg ga #ggggtggg 52620 tgaagctggt ggttaccctg ccgtattgga tgctgtcctt tcctgctggc ca #tcctgccc 52680 tgtcagggtc atccagagga acctctgtct gggcttctga agtggtacgg tc #cttctcag 52740 ggactgactt gatggacctg tcatttagag gaaatgaaga caaagtcagt at #ctctccca 52800 atggtggggt gtatgtgcct aaccctcagg cccactgaca gccactgagc tc #tgggtaca 52860 ctctgtactc tttcattcat tcatttatct aacagaatac tgaccagata tc #acacttcc 52920 cttcttccca tatggtaccc agctaaatgc catctattac cccagggtca ag #caagccca 52980 ttcttctgat gccaattcac aggatgaact taacttgccc accattggaa ct #ctgttctc 53040 agaattttct ttcttttttt tttttttttg agatggggtc ttgctgcatt gc #ccaggttg 53100 gtctcaaact cctgagctca agcaatccac ctgcctcagc ctcccaaagt gc #tgggatta 53160 caggcatgag ccaccatgcc cagcctgttc tcagaatttt tattttggct ta #agctttcg 53220 tgcaattgtt ttgttcctac tgtataccat cagatttgtc agtccaactg gc #agaatata 53280 aattatgcac aattcagatg ctaaagactc tttgaatgtt ttatctgtgg at #gagtaggc 53340 tgacttaacc tctgtgcctc agtttcctca gctgtaaaaa taggaatatt at #ctatctat 53400 ccatccatcc atttatccat tcatctacat acctgtatat ctacatatac at #gtctacct 53460 accttctatt aaattgaggt tagcccaaag ctgcctcctt acatatttta ag #tttggcct 53520 aaaggttttc cccgtacata gtgaactgta acctaattgg actcaaacag ac #tgcaacct 53580 actcctgtgt caatcactga gtttcagcca atcaaaggca accaaccgtt ca #aaccatgt 53640 tccaataaag caaacgctga gctgtaacca atccggctgt ttctgtacct ca #cttctgtt 53700 ttctgtcctt caccttcctt tttctgtcta ttaatctttg accccgtggc tg #taccagag 53760 cctctctgga cgtattctgg ttcagggact gcccgatgtg cggatcattc tt #tgcttagt 53820 taacctctgt tagccaggtg cagtggctca cgtgtgtaat cccagcactt tg #ggaggctg 53880 aggcaggtgg aacacctgaa gtcaggagtt tgagaccatc ctggacaaca tg #gcaaaacc 53940 ctgtctctac taaaaataca aaaattagcc gggcctggtc acatgtgcct gt #agtcccag 54000 ctactcaaga gactgaggca tgagaatcgc ttgaacctgg gagacgggga tt #gcagtgag 54060 ccgagattgt gccattgcac tccagcctgg gcgacagagc aagattctgt ct #caaacccc 54120 gccccccccg caaaaaacaa aaaacctcag acacattaaa tttgctagag gt #taatttgg 54180 cacaatctcg gctcactgca acctccgcct ccgaggttca agtgattctc gt #gcctcagc 54240 ctcccgagta gctgggacta caggcacatg ccaccacgcc ggcttttttt tt #taaattta 54300 cttatttttt atttttagta gagacgggtt caccatgttg gccaggctgg tc #tcgaactc 54360 ctgacctcta gctagtgatc cacccgcttc agtttcccaa agtgctggga tt #acaggtgt 54420 gagccaccgt gcccagcctt aatgtgtcta ctggttttct tttaacatga ct #acctatcc 54480 atctgatctt acttcagatt cttgtgcgct gtgaaggtgg tgggatttct ca #gtgtgtgt 54540 gtgattgaga agtgccctca gggtggctag ctgggatggg ggtcagcccc aa #tggtccct 54600 ggggactgag gcccctcaag atcgctgccg cccaccaccc ctgtatagca gg #cacttaag 54660 ctcaggccat ctggtatcag tggcctgttg ttctgcttcc caagacccct ct #cattaaga 54720 ggggagagta tcaggcagca ggtccttctg ctgcagacag ctccacagtg aa #cccagctg 54780 tgtcctggct ggagggagct gagaaaagag gggaccggag gcctcctcct gg #ccccttgc 54840 ccacgtgttc tggccagcgt caagtgatgc tgtgcataca gacccaagcc ct #gtgcatag 54900 ccagcctgtc aaagcataag tggccgggcc tggcatggtg gtttacagct at #ggggagga 54960 accagtcctg ccctactgca gcattcagac aactccagca agctggcctc gg #cccacttg 55020 aagacatcca tcaattggaa ggcatattgt tcattccatg aactggcctt at #gggggcct 55080 aatcatcttg gctaactgga ccaattttgg taaattatcc ctcagcaggg ca #ccatgggg 55140 ggacttcagc aggttctcta tccataatgg ttttggttgc ccgcctaact gc #ccgagatg 55200 cgggtggtcc cttcagctac ttcagcttca gcctgtgccc ttctgagtgt gg #caccatgg 55260 tggactcacc tctcgcgtct aagctcgggc ctcctgcctg cagaggtgcc tc #tggggtcc 55320 ttggtgctgg tcccaggttc tgtttctgca aggtcaagag agtcctgtca cg #caacacgg 55380 cccagatacc cactttgaca cccactgact atgtggcctt aaccgctctg ac #catccatt 55440 tcccctgatc tggctcctgc cacgtctcca gcaacctctc tcaacacccc ac #tctgagtt 55500 cttccaggaa catccttcag gcattcactc actcattcat ttcttcaatc ag #tgataact 55560 gagcacctac tatgaacttg aggttggaaa aacagcattt aacactgtac aa #agtcaagt 55620 tacctctgtt tcccccaaca gccttgctca agcagttcct tgtgtctgga at #gctctttt 55680 ctggctaact ctcacctacc ctcaggtacc atctccccta ggaaggacac ct #ccccacca 55740 ctatccccca ggtgtggcca gtaactgaaa gcaaatctgt agtagtttaa cc #acagacct 55800 gtaagcaaca agtaactgct actgtaagct gctaggattt ggggggctat tt #gttacaca 55860 gcatcatcac agcaaaagct gaccaacaca aacaggcaag ttctatcttc aa #gcttcagg 55920 actgtgacat tgtgaatcaa cacttaaggt tttaaccagg ttgggccagt gc #taagcaga 55980 tgttctcaga agaagcaaag cctgagattg agggagacct ggatgtgaat cc #ttgctttg 56040 tcatgaaggg atagtgtaga gggtagcaat taaaaaacac attctctgga at #caagttgc 56100 ttgggttcaa atcccagtgc tgccacttac aagccatgta acctgggact ag #ttccttaa 56160 cttctgggcc tcagtttcct catctgtgaa atggaaatga ttctagtacc ag #cctcacag 56220 gggcattatg ttgattaaat gagctaacct ctgtgatgtg ctgttagttg ct #acttttca 56280 gtcattgtga gtgagcttgg cttggcaact ttacttccag aaccttgcca tg #tatccagc 56340 acactgtttt tttggattat tagaaaccct agctagcatg gtgtagcttg ct #aggcatca 56400 aagtccttct tgggctgtct ccatagcaac tgcaagcata gactctggag ct #ggacatac 56460 tcaagttcta atcttgtgac cttgggcaag tgatttaact ctctttgcct ca #gtttgctc 56520 atctgtaaaa tgacagcaat aacttcacat gcctctgggg catgtgtgag aa #tcaaatga 56580 aatagtgtat tttttacaga agcacttagc acaacccctg gctcatggat ga #tgttatcg 56640 gctattcttg gagaaaggtg acctattaag agagctgtct gcttccaggc ct #aggcctgc 56700 agacagggtg tggccagagc actccattca tgccagtagg acccttcgag cc #ttttcccc 56760 caagggtggc aggagccagg cctggagaat cagcaaagcc cacctagtac ct #ccttctcc 56820 tctatctcct ggctgtctgg cttgatccag aagacacacg agggccccct tc #ctctgcag 56880 aagctcctgg taggaaccca tctctgcgat ggccccattt gccagcacta tg #atccaatc 56940 agcctggggc aggatgtgga gtgcgtgcgt cacgagaatc cgtgtctggg ca #gggaaggg 57000 gtagaagtta cacacatgtg gccgggtgca gtggctcatg cctgtaatcc ca #acactttg 57060 ggaagccaaa gcatgtggat cacttgaggc cagaagttcg agaccagcct gg #ctgacacg 57120 gctaagccct atctctacta aaaatacaaa aattagctag gtgaggtggc gc #acacctgt 57180 agtctcagct actttggagg ctaaggcaag agaatcactt aaacctggga gg #tggagctt 57240 gcagtgaggc gagattggac cacagcactc catcctgggt gacagagcaa ga #ctctgtca 57300 agaaaggaaa gaaagaaaga gaagaaaaga aagaagaaaa gaaaagaaac aa #aggaagga 57360 aggaaagaga gagagagaga aagaaagaaa aaaaaaatgt acggccgagc gc #agtggctc 57420 atgcctgtaa tcccagcact ttgggaggcc gaggcagatg gatcacctga gg #tcaggagt 57480 tcgagaccag cctggccaac atggtgaaac cctttctcta ctaaaaatac aa #aaaattag 57540 ctgggcgtgg tggcgggcac ctgtagtccc agctactcgg gaggctgagg ca #ggagaatg 57600 gcgtgaaccc gggagccgga gcttccagtg agcggagatc gcaccactgc cc #tccagact 57660 gaaagacaga gcgagactcc atctcaaaaa aaaaagaaaa agaaaaaagt ta #cacacatg 57720 tgcttggcca gcctcctgag ctgggggttg gggtgggggt attgtccctg ga #ctcagagt 57780 ggggacagct ccccttcttg tgctcctgcc gcctttcttg taaacagcat at #ccaaatag 57840 agaaacagag gggactccct tagcctgtgt ctcaaaacaa gaagacaagg ag #tacatctg 57900 accctggcca atcatccaag gcaaagctgt agtagttaaa tcacagatcc at #aaggaaga 57960 aacacctgct gttgtaagct gctgggatct gggggttgtt tgttacatag ca #ttgtcaca 58020 gcaaaagctg accaatacaa agaggaaatt ggactcaagt ggaaggggga gg #tgagataa 58080 acttgggtta ggactggatg ctaagtgctt cctctgcctt tgccctgtac tg #tctgacac 58140 atgttcccaa acttactgtt ccctggagta gcccaccagg cccaatgacc tg #gttgaaga 58200 catgctggcc aacgtgggca tccagggccg ccagggggtc atccagcagg ta #cacagctg 58260 cctttctgta tacagcccgg gccaggctca gccgctgctt ctggcctccg ga #gagattca 58320 tgccctgtgg ccacaaaagg aacagtggcc tgagtcagca tctacagggt ga #aactgggg 58380 tgcccaggct gtggcaggtc agggcacacc tgcccatcag ggtgaggtac ag #ctcaacat 58440 gcctattccc tggggacagg cccagcttcc aaggcactcg ctctcaagcc aa #caatgcct 58500 ccatccttac ccgacctcac ttctccactt cccaagcacg cttcctggag ga #gttaccta 58560 cacttcccaa tccactctgt ctcctcctgc tcactctctc tatctctttg ag #tccaactc 58620 ttgtttccct ttctccactg agaccaccat ccatttccct attccctcat cc #agtggcag 58680 cttttcagtc ctacttttgt attttaaatt ttaattgttt tcttttagtt tt #cattgata 58740 tgtaatagtt gtaactattc gaggggcaca agtggtattt ggatacctgt ag #ggcagtgg 58800 tccccagcct ttttggcacc agggaccagt tttgtagaag acgatttttc ca #tggacctg 58860 ggggcagggg gatggtccgg gggatggttt caggacgatt caagcacatt ac #gttgattg 58920 tgcacttcta ttattattat tactgctgtt gtcgttgtta ttattgagat gg #agttttgc 58980 tcttgtcacc caggctggga gtgcaatggc atgatcttga ctcactgcaa cc #tctgcctc 59040 ctgggttcaa gcaattctcc tgcctcagcc tcctgagtag ctggaattac ag #gcacccac 59100 taccacgcct ggctagtttc tgtattttta gtagagatgg ggtttcacca tg #gtggccag 59160 gctggtctcg aactcctgcc ctcaggtgat ccgcccacct tggcctccca aa #gtgctggg 59220 attacaggcg tgagccactg cgcccggcct acttgtatta ttattgcatt gt #aatatata 59280 atgactcacc atcatgcagt atcagtggga gccctgagct tgttttcctg aa #actagata 59340 gtcccttctg gggatgatgg gaggcagtga cagatcatca ggcattagat tc #tcataaga 59400 tccctcacat gtgcagttta cagtagggtt tgtgctccta tgagaatcta at #gctgccac 59460 tgatctgaca ggaggtggag ctcaggcggt gatgggaaca ataaggaatg gc #tgtaaata 59520 cagatgaaac ctcactcgcc tgccctctgc ccacctcctg ctgtgctgcc tg #cccagttc 59580 ctaacaggcc acagactggt gctgatccat ggcccggggg ttggggaccc ct #gctgtaga 59640 caatatgtaa tgatcaaatc agggtaactg agatagtcat cacctcaaat at #ttatcttt 59700 tgtattgcga acacaaccat ccttctcttc tagctatctt gaaatataca ag #taaatgat 59760 cattaactat aatttccctt gtgcactatt gattacttta acttattcct tc #tatctagg 59820 ccttcttgtc tttcattcat tcttttaaaa cttattttta tttatttttg ag #atggagtt 59880 ccactctgac acccaggctg gagtgcaatg gcttgatctc ggctcactgc aa #cctctgcc 59940 tactgggttc aagcgattct cctgcctcag cctcccaagt agctgggatt ac #aggtacgc 60000 caccatgcct ggctaatttt tgtattttta gtagagatgg ggcttcacca tg #ttggccag 60060 gctggtctca aactcctgac ctcaagcaac cctcccgcct tggcttccca aa #gtgctggg 60120 attacaggca tgagccaccg tacccagcca ttcattcatt cttacattca gt #cattccac 60180 taataaccac tgcctcgtta tcataaacca ggcatggttc taggctctgg ag #aaacagca 60240 atgagcaaaa caaagttgct gctctcttaa tggatccatc attctcatga ag #gggacaga 60300 gacaggcaat ccataaacaa gtaaggcaga cagcacatca ggtggaaagt gc #tatgaaga 60360 ataaatagta aagcaggggg agccaggttc aggggctcac gcctgtaatc cc #agcacttt 60420 gggaggcgga gctgggtgga tcacttgagg tcagaagttc aagaccagcc tg #gccaacat 60480 ggtgaaaccc catctctact aaaagtacaa aaaaaaatta gccagttgtg gt #ggtacatg 60540 gctgtaattc tagctactca tgaggctgag gtgggaggat tgcttgaact ac #tcatgagg 60600 ctgaggtggg aggaatgctt gaactcagga ggtggaggtt acagtgagcc aa #gattgtgc 60660 cactgcactc cagcctgggc aacagagcga gactccgtct cagaaaaaaa aa #aaaaaaaa 60720 gagaaaaagc aggtgcaggt gtagggtgca ctaacaatag tagggtggct gt #ggtggtag 60780 ataaggtggt caggaaaggc ctctctgtga aggtgataga agtgagggat ga #gccctggg 60840 gactcctggg gagagctttc cagcagaggg aacagcagtg caaaggccct gg #ggccagag 60900 tgtgctgtgg gggatcaggg aatatcacag agactaaggt ggctgcagta aa #gctgagag 60960 gtgatgatgg gagatggggc taatggatac cagagccagg tcacagggac ct #tgccaggg 61020 attgtcatga cttgggcttt gtctctgagg taaatgggga gatcacctga gg #tccggagt 61080 ttgagaccag cctggccaac atggtgaaac cctgtctcta ctaaaaatat aa #aaattagc 61140 caggtatggt ggcatgtgcc tgtaattcca gctactcagg aggctgaggt gt #gagaattg 61200 cttgaacgtg ggaggcggag gttgcagtga gccgagattg catcactgca tg #ccagcctg 61260 tgcaacagag caagactctg tctccaaaac aaaacaaaaa acaaaaccac aa #gtggtggg 61320 ctggatttgg cttggggtca cagtttgcca acccctgccc aatccatagc tc #cagatgca 61380 tatatcctgt ttcttggaca tctctgtcca gaccccttgg tgaggcccag ag #aggggaag 61440 caattacacc aacattactc agcaaggcag ggcagagtaa gacaggagtc ta #ggtcttct 61500 cactctcagt tgtcagagag ctcctcactg ccaatccctg ccacaactcc ct #gcctctct 61560 ctttgtgtct atttctgctt atcaattagt gattacgtat tgagcaccta gc #acgtgctt 61620 gacgctgagc tgagcccttt ttctccgcta cttccctaac cattcctctc at #ttctccat 61680 catactgccc atgatgagtc ggggacccaa atgactccca actgcaatgt ct #ccctgtcc 61740 caaaaagacc cccaaactct cacctgctcc ccaattgaag tgtggattcc ct #cagggaag 61800 ctgtccacat ctggctgcag ggcacaggct tctagtactc tctccagcca gg #gtgggtcc 61860 agctcctgcc cgaagcacac attctctacc acagaggtgt tctgcaccca gg #cctcctgg 61920 ggcacgtagg ccacagcacc ctaaaacaca acttactttg gtcacaggag ga #tgatgggg 61980 acagaggtgg gataggtttt gaggagcagt gggagctggg ctctcagtgg tg #ggtgagag 62040 gtggagagaa tgagtgaaag tgaacttggc tgggatgggg agggtgggaa gg #cagcgagg 62100 aagtgggact ttcaggatgg ggacatccta gcagacaggc tgggggtggc ct #cacctcga 62160 tgctcacgaa cccctccacc tttgacagct ccccaaggag ggcggacagc ag #ggaggact 62220 tccctgcccc cactggaccg acaacagcca gcagacagcc ctggggcacc gt #gaggttta 62280 ttctggacac gcaagagggg agacatgacc ttggttaggg ttcagcccgc ct #ctgtgagg 62340 aaggatgagc cccagacgga gctgagcttt cctgctctgg gagtctccaa ga #ggacctgt 62400 ggggctgttc tttttcccag tccttgtcta gctatttgag gaactatcct gt #gcacatct 62460 gtgcatgtac acatgcacac aaagcgtgca cacatgcatg cacatttgca ca #ctcataca 62520 agcatgctag catgcacagc aacacaatgt gggcacgcat ccacacacac ac #aagtgcat 62580 gcacataccc aatcaatcca tgctcacacg catacatgtg tgcacacatg ca #caccacgc 62640 acacacacac agggttgact atagcctgag ggtttcacca gcctggcctc ct #gccttggc 62700 tcttgcgata aataggctct ttcctccctc cctcccgcta ctcttggtcc cg #ccccactc 62760 ctgtccacgt cccacagccc atcctccacc cagtgaccag agggatctgt ta #aaacccaa 62820 gtcagatcgt gacacttccc agctaaaccc gccagcactc ccatttcact ca #gggtcaaa 62880 gctaaagtcc tgacgatcag gaatgacatc tcccgcctcc ttccgctctg tg #cctcagct 62940 gctcggccct ggccttgctg acctccttgc tgtttcttga acacaaaagg cc #agtggttc 63000 tcaccagggg gtgactgcat cccccaggag tcatttggca agatctagag at #atttttgg 63060 atgtcacaac cagtaggggg tgctgctggc atctagtggg tagagactgg gg #tcagctaa 63120 acatcccaca atgcacacga cagcccccaa caaaggagtt tcagcccaaa at #atcaacca 63180 tgctgaggtt gagaaaccca ggtccaggca ctctcctgcc ccaggacctt tg #ctgatgcc 63240 attcccaccg cctagaaggt tcttctccca ggccgggcac ggtggctcat gc #ctgtaatc 63300 ctagtccttt gggaactgag gcaggtggat cacttgaggt caggagttgg ag #accagcct 63360 gacgaacatg gtaaaaccca tctctactaa aaatacaaaa attagctggg tg #tggtagca 63420 tgcgcctgta atcccagcta ctcgggaggc tgaggcagga gaattgcttg aa #tccggaag 63480 gtggaggttg cagtgagccg agatcatgcc attgcactcc agcccgcgtg at #agagcaag 63540 actccgtttc aaaaaaaaaa aaaaaaaaaa aaaaaaaaga acagctcttc tc #ccagacac 63600 tccttcctta tgatctcggc ttgaatgcaa agccttccct cgctagacat gc #catcgtac 63660 tctgttccct tgctctggtt ttctgtttgg gcctcacctc tatcagcatg tc #accccacg 63720 agagcagggc ccttgtctgt ttccttcgcc ctatccccaa tacctagaac ag #agcgtggc 63780 ccatacctag tgctctatcg atgaagtgag tgaatgacaa ccaatacaaa ta #ctacctgg 63840 ggcatattcc ttctcttctt agggagtttc agggctgtct gagatttttg gc #cacaaaga 63900 ccaagcgata gagttggaga ctatagatga tcatgacctc ggactgatac ag #gaggcaca 63960 gaagtgagca cagctgatag ggctgaacct tggggctcct ctcagccagc cc #tcccttgg 64020 catcgtcttg gccagcctgg gagcacaggg gtgtctcccc ctaatggggg ag #gctcagat 64080 gccctggtcc ccgtctgcag gagatactgg tctatgctgt gcaggtcccc ac #cttcagga 64140 ggtagagatg tatcctgaga acctccccgg cagagcccca gcccagccaa ac #ccaccctc 64200 cagtcccagg ctggaaacct acaccacctc tcaggtggga ggcagcagga gc #cccatgca 64260 tcttctccct aaaaacatga ggctggttac tacgggtgtc gttctgtacc tg #tggaggca 64320 gggagggctt tcctgggacc aggcgaaggt ggcactgtgt atggtgatgc aa #tccttccc 64380 ggcagctgca gggcacaaga ggccatttac aggagacccc tgacctggcc gg #cctctgca 64440 tcggagaggc ccccaggcac catcccccgc cccccccagg ggcagaggct gc #aggaagaa 64500 atctctccca ctgaacaaat tgccctgcta ctcactggct tgtgggtgac cc #cgcagggt 64560 tcttgttctg tccgtgtccc atggctacat aatccagggg gaggcaaact gt #ggcccaga 64620 gaccaaatcc tgcctgctgc cttttcttat aaataaagtt ttattggaac ac #ggccacat 64680 ccattcattt ctctatttca tgctttgagc agttgtgaca gagactgtgt gg #cccacagg 64740 cctaaaatat gcacaatctg gtcatttatg gaaaaagtta gtgaatttct ga #aataaatt 64800 atcatcaaat cccagccttc ccagagtgaa gggggtgtta ttaatttcac tg #tggccggc 64860 acagtgtctc atgcctgtaa tcccagcact ttaggaagca gaggtggtag ga #tcacttga 64920 ggtcaggagt ttgagaccag cctggccaac atggcaaaac cctgcctcta cc #aaaaaata 64980 caaaaattag ccaggcgtgg tggtgggcgc ctgtaatcac agctacttga ga #ggctaagg 65040 caggagaatt gcttgaaccc aggaggcgga ggttgcagag aaccaagatt gc #accactgc 65100 actccagcct ggatgacgga gtaagactgt gtctcaaaaa tactactgct ac #tactacta 65160 attattatta ttatttcact gtgataacaa gtgtaattag attagtggtt ct #tgatcctt 65220 aagacgtagt tagaattgcc tgaaagattt tctaaaaatc aaagctctca tg #gcttagcc 65280 cagatcaatt aaattcatcg tcacaattag ctgctataac gattaacatg cc #cattttgg 65340 agatgggaac acggaagctc agagagatga tctacttgtc aggatcaccc ag #ctagtcag 65400 tgctggggct gggatttgga cctgggcagt tgaatgccac aggctcggct tc #ttaccact 65460 atgtgggtgt tttccaggta cacagtttgc ccaggttctt cagtgcaaca ag #ggggaggg 65520 tgtcttggcc cgtggcataa aagaaggatg gggtggaggg ggaagcccag gt #aacttgag 65580 cttggtaagt ctcatcgtgc aatggtgctt gaaatgctgc tattttccag ct #tgatcaaa 65640 atgctgtcat gcttattacc tgggactttc tgcatgagga caaggacctg gt #ctgttaga 65700 gcaggagtcc tcaaccccca ggccacagac tggtaccagt ctgcagcctc tt #aggaactg 65760 ggccatacag caggaggtga gcgcagggca ggtgagcaga gtgtcatctg tg #tttatagc 65820 cactccccat cactcccatc accgcctgag ctccacctcc tgccaaatca gc #agcagcaa 65880 tagattctca aaggagcacg aacacttgtg aactgtgcat gtgaggaatc tg #ggttgcgt 65940 gttccttata agaatctaat gcctgatgat ctctgtctcc catcacccgc tt #tggggcca 66000 tctagttgac ggaaagcaag ctcagggctc ccactggttc tacgttatgg tg #agttgtat 66060 aattatttca ttatatagta caatgtaata ataataaagg gcacaataaa tg #gaatgtgt 66120 ttgaatcatc ccaaaaccac gcgcctctcc ccggtccgtg ggaaaactgt ct #tccacaaa 66180 accagtccct ggtgccaaaa agcttgggga ccactgtgtt agagtgttcc ct #gttgtaca 66240 cccaggatgg tacaaagtgg gcgctcagtc agtggtcgct gaatggctag ca #gaaagaag 66300 agcagcacgg tgccagtttc caagtgacac gcagatggcg tgatctgcac gt #gtcatcca 66360 ttgcccgcag cccccatctc cccccagtac tgatgctggc ttgccattat gg #gccggggt 66420 ggcccccaca tcccccatcc ctcccacacc cctcctgcca gactcagcac tc #accgcttc 66480 cagaggaact tgagtctacg acaccagggt caacttcttc caggcagagg aa #ggtgacca 66540 gacggtcaaa ggacacccgg gcctaggaaa accgaagccg caggtcaccc ag #caagaaga 66600 gcaaagaact caggttttgg gtgtcggtgt ctcaagatgt gtggcaacag ct #tcctgtct 66660 accaagctct gtgcatagga ggcgtgagga caaagctttc tagttcatgg ga #aacgatgc 66720 aacccgagtg gtgaccttga tggtggtgat ctcccacctc tgcgatccta ca #aatcagtg 66780 acaccgaagc aagccagctg ccattctgca gacaagatct gggaagagga tg #gtggcttt 66840 tccaataagg ttatcaagcc attgtgtgga acaatttcaa atgttgtcca cc #tgggggcg 66900 ctctctccca gtcacaaacc catctttggg gaagaaagag accagtcgtt aa #aatagaga 66960 ttaggccagg tgcagcggct catgccggta atcccagcac tttgggaagc ca #agtgcagg 67020 aggatcactt gaggccagga gttggagacc tggggaacat agcaagactc tt #tgtttcta 67080 caaaaaatta aaaaaattag ccggatgtgg tggcccatgc ctgtagtccc ag #ctactcag 67140 gaggctggga ggtagaagca tcacttgagt ccaggagttt gagcatgcag tg #agctgaga 67200 tcgtgccact gcactccagc ctgggtgaca gagtgagaca ctgtctcaat aa #ataaatta 67260 aataaataaa taaataaata aataaataaa taaataaggc ggccaggcgc gg #tggctcat 67320 gcctgtaatc ctagcacttt gggaggctga ggcgggctta ttacatgagg tc #gggggttc 67380 aagaccagcc tggcctggcc aacatggtga aaccctgtct ctactaaaaa ca #caataaat 67440 aaataaataa gactgggtgc agtggctcat gtctgtaatc agcactttgg ga #ggccaagg 67500 tgggcagatc acctgaggtc agcggttcaa gacctgcctg gccaacatgg tg #aaatctca 67560 tctctactaa aaatacaaaa aaaaaaaaaa aaattagctg ggcatggttg tg #catgcctg 67620 tggtcccagc tacttggcag gctggggcag gagaatcact tgaatctgcg ag #gtagatct 67680 tgcagtgagc cgagattgca ccactgcact ccagcctggg tgacagagtg ag #actccatc 67740 tcaaataaat aaataaataa aaataaaaaa taaaaaacat ggagatggct ca #ggtatgcc 67800 gccgtttctt gttttcacca tgctgaaagg actagagata gcaaaggaag ag #aaacaaaa 67860 tcgctttgta taaaaaaggg aactgacatg attgcttgta tgtggaattg ct #gggcagat 67920 ggacaagtat gcatgttctg aggtgtgtgt ggaaaggtct gcacattgcc ct #ccaaaggc 67980 tgaccccttc cagatgtatt tgctgtactc tctgcccgcc tctgttcttg cc #cctacccg 68040 cctcttttcc agctccacac catccctctc cctcccactc tgtcttccct ct #cctctgca 68100 aatggcaggg gtagggaagc tggagccagg tgtagcccac gcactctccc ag #gatggctc 68160 cagcccttgc acccacctca cctggacgag ggagtggatg gagaagggca gg #aaagcctg 68220 ggccttgttg aggatgttga gaactgtgag agtcacaaag gctttctctg ca #ttcatagc 68280 attctcggcc accagagtgt ggacagcaaa caccaccagt gcgacctggg gg #gtgggggg 68340 gacacgtggg gcaacagtga gacacgcaag catggatagg gcagcctggg ca #agctgtgg 68400 tgcctgcacg gtccatgtgg cccacccgcc atgtccgcat gtgcttccct cc #gtagatcc 68460 cactcccagt cctgctaaca catgtcctct ccgcagtcat aagctacata ag #gctctctc 68520 taaagacaca gcgcattgct aatggtgatg agtgcgcagc cccacggctc ta #ggcatcac 68580 tagaacctag gggagaacct aatgcctcta ggttccaggc atcgggggac ag #cagagttt 68640 ttgatcttgg tagccctgtt gttctagacg tggtggaact tgtgattcta ga #gtcccttg 68700 gaagatgact ctaaagttgc aggcaggagc agcacttgag ggctctaggt gt #tggtgcca 68760 tttgtggtgc tttttttttt ttttttgaga tgaagtcttg ctctgtcgcc ca #ggctggag 68820 tacagtggca tgatctcggc tcactgcaac ctctgcctcc tgggttcaag tg #attctcct 68880 gcctcagact cccaagtagc tgggattaca ggcgcccgcc actgcaacca gc #taattttt 68940 gtatttttag tagagacagg gtttcgccat gttggccagg ctggtcttga ac #tcctgacc 69000 tcaggtgatc cacccacctc ggcctcccaa agtattggga cgacaggcat ga #gccaccac 69060 acccagccta cgtatcaaat tttttaaaac tgtggtttag gaaggttgtt ct #gacagcaa 69120 tatgaaataa attacagaat ggcaggacaa ggatcacgtc cagtgacagg gt #ggctatgg 69180 acatctgctg gccaggatca gggaagtcac tctgacccag gattctacct ct #gccacccc 69240 cctgcatctg taccctcctc cccacatcgg tagaagcctg gaactctctc tg #agagttca 69300 gcagacttta tcagccactg ccacctttgc tagaataata tgattaatta gt #tcttgtag 69360 aagacagcag ggacccagag agaacaggat ccagaatgag tgggttttga tg #gacggggt 69420 ggtaggatct ggggggctcc acctacctca ccctgccccc acccccgcac tc #cttcccca 69480 gtgctgctca gcatagagac tagagtgacg tcaccagaaa tgtagacact tg #gaaggaca 69540 ccagcgacac agagaagagg aggccggagg tccgcaaggc gcccagctcc tg #gcctcgga 69600 tgcccaggac tctgtccaga aaggctccct cccagccatg gaacttgatg gt #cttcgagt 69660 tcctgaggat agagctggtg agccgtgccc gtgagtcctt ctgcctcatt tg #ctcctcct 69720 gggatcggag ggaaaaagag agatgaagac agggacagtt gagaattctt cc #ctgcaccc 69780 tgacagccac ccttcagcaa atcccattca tctcaccaaa ctgcgtccca aa #cctgtctg 69840 cctctcagca cctctgaccc tcactcctgg tccaaccacc atcatcctgt ac #ctggactt 69900 ctgcaggagt gcccctggga taatgtgccc cacggaggaa gcctctgatg cc #cggagaac 69960 agaggcagcc tgagcccacc tgggtatgac accatcagga aggctacctg ga #ggtggttg 70020 atgcctgagc tacgtctttt ttttttttta ccttttacat tttttgtgga gt #tggggtct 70080 cactatgttg cccaggttgg cctcgagctc ctgggctcaa gtgatcctct gc #cctcagcc 70140 tcctaaaatg ctgggattac agcctgagct aaatcttaaa tgaccaggaa gt #gcgtgctg 70200 agcaggcaga ggatgggggg atggagctgg agaagaaggg aggggagggg ct #tgagatgg 70260 gggtgggggg tgggggctgg ggggtagggg ggtggcgggg gcagctaaaa cc #caggcaca 70320 gggaatagca tgactcagag gacactcagt gtgaccagag gaccgtgtgg gc #agggtcac 70380 ttggcacttt aaagtcaggc agaagaattc agggtctctt gtgcttcacc at #ggggcggg 70440 ggcatcatca gaggggcagc tgcctggaga aggttttact ttttgagacc ga #gtcttcct 70500 ctgtcgccca ggctggagtg cagtggtgtg gtctcggctc actgtaacct cc #gcctcctg 70560 ggttcaagcg attctcctgc ctgagcctcc cgagtagctg ggattacagg cg #cccgccac 70620 cacgcccggc taaattttat attttttgtg gaggcagggt tatgccatgt tg #gccaggct 70680 ggttttgaac tcctgacctc aggtgatctg cctgcctcgg cctcccaaag tg #ctgggatt 70740 acaggtgtgg cctcccaaag tgctgggatt acaggtgtca gccactgtgc cc #agcctaga 70800 atgttttaga ggagtccacg caggaggctg aagaaacagc ccaggtgaca ga #cggacact 70860 gggacagctg ggccaagaga ggaaataagt tccttccctc catcccccat ct #ctccctct 70920 ctctttcccg ccttttcttt ccttccttcc ctatctcctt tcttcctctt tc #ctttgctt 70980 tcttccctct ttcatttcct tccctccctc ccccctttct tccttctctc cc #tcattcct 71040 tctcttcctc cctcaattct ttccttccct ccttccctct gtccttcctc cc #ctttccta 71100 tctttccttc cctccctcct tttctctcct tcccctccct tcttcctctc ct #cctttcct 71160 tcttccctcc ctcctttctt ccatagttca caaacactta ctgagaacct tc #tgcctgcc 71220 aagcactaac tagatgccga gttggccaca atcagtggcc tgtgctgttg ca #aagcttcc 71280 agttaaggaa aacaaggcaa tcaaccctgc cgggtgcttc ctgtaggacc ct #gtatgttg 71340 tgggaagtgc tgtgggggga aaaaagcaaa aacaatccca gggcaggcaa ag #gagaggct 71400 gctgctggga ggggagggat ggacgtgcca tttccttgct ggagggtggt ga #gggaagcc 71460 gccctgactg cagggaggtg acagaggatc ttcgggagtg agggtgatcc ag #gtggaggg 71520 aacagctaaa gcgaaggcct gcagggatgt gtgagatcgg gcaggtttga gg #atgggaga 71580 tgtgtgggga aaggcaggga aggaggggag atgggtagaa ggtgaggttg ga #agcaataa 71640 ggccagctca gggcgggcct ggtgggccac tgtggggtct ttggctcagt ct #gaggaaaa 71700 tggggccgct gtgggtctga gtagaggagg ggtacaacgt atttggtttg ca #taggtctc 71760 ctctggctgg gagtggagag aggctgaggg cagaggcggg gagtgagcca gg #ggcttgct 71820 gctgtgacct gggttagaga tcatggggtt tggagagcct atgctgggaa gt #gtgacatt 71880 ttggatgcat tttgaaggtg atgccaagca aatctgctga cagatgggat gt #gagagaaa 71940 aaggcattga actgacccag ggcctgtggc ctgaacattg gagggacgga gc #cactgtcc 72000 attgagagga tagggggagg gggtgcaggt ctgagtgatg ggcagctcac ag #acgacaag 72060 aacaaagcca gacccgtggg ctcgcactca gctctcccct ccccatctcc ca #caccagga 72120 cctgtggctt cctccctact tcctgcctgg tccgtccctt tcccaaaagc ca #aacctgat 72180 ggtggttcct tttcttggag atgaagaaat tcagagggag gaggctcagg aa #gacagcga 72240 tggcagtgag ggcggagggc cccaggagct ggggatagaa ggggcaggat gt #caggagat 72300 cccgaggagc ccagctctca gaggcacgtg aaccagagca actccatctt ga #atagggac 72360 tgggtaaaat gaggctgaga cctactgggc tgcattccca gacggttagg gt #attgtaag 72420 tcacaggatg agataggagg tcggcacaag atacaggtca caaagacctt cc #tgataaaa 72480 caggttgcag taaagaaggc ggccaaatcc caccaaaacc aagatggcta cg #agagtgac 72540 ctcccgtcat cctcactgct acactccacc agcgccatga cagtttacaa at #gccatggc 72600 aacatcagga agttacccta tatggtctaa gaaggaaagg catgaataat cc #accccttg 72660 tttagcatat catcaagaaa taaccataaa aatgggcaac cagcagccct ct #gggttgct 72720 ctctctatgg agtagccatt cttttagatc tttactttac taaaaaactt gc #ttttggcc 72780 gggcacggtg gatcatgcct gtaataccag cactttggga ggccggaggc gg #gcagatca 72840 cctgaggtca ggagtttgag accagcctgg ccaacatagt gaaacacagt ct #ctactaaa 72900 aatataaaaa ctatccaggt gtggtggtgg gcacctgtga tcccagctac tc #gagaggct 72960 gaggcaggag aatagcttga acccaggagg cggagcttac agtgagccac ga #tcgcacca 73020 ctgcactcca gcctgggtgg cagagtgaga ctccgtctca aaaaacaaac aa #acaaacac 73080 ttgctttcac tttatggact cgccctgaat tctttcttgc acgagatcca ag #aaccctct 73140 tttgggatct ggatcaggac cccttttctg taacacagct gcagaccccg aa #ggtggtca 73200 gacttgggtc ctaagatggg gatgtcaggg aatctgataa gggcagccac ca #ggtcccag 73260 ggatctgtgc tcatggggtc tgctgtgtca ggagatgcct gctgaaggtg gg #gtccttca 73320 atgtcaggga gggaaacagc cctcttacac gatagggaga gagttatatt ca #agacagat 73380 tgtgcacaca cacgagtggg actggggggt gttcccagcc acaacagtaa ag #ttgagacc 73440 tatggaatca ggggacctgg ttcaaatcct gaccctgaga gttttgagtg tg #gccttggg 73500 gcaagtcatc tcccttaggt gcaattctct tgtctgcaaa atgggaatag ag #ttgttctc 73560 atttggcatt ttctcttatt gcgtttaatt attttcctaa tcttcatttc at #ccctcgca 73620 agggttgtca gatttagtaa atcatcatac agaatgccca gttacatttg aa #gataaaga 73680 gtgaataagg ttttagtcta agtctcgtga aatatttggg acatacactg ag #aaattctt 73740 ccgtttgtct gaaactcaca cttcactgaa tgtcctgtgt tttctctggc aa #ccctgctc 73800 ccccaccaac gtggtgattt tgggatggtt atcttccccc tctcagcttt gg #tttctata 73860 tctggaaaat gtggaagtgg ggggtagaat aaatgatttt taagttgctg tg #actttctg 73920 agatttctgc acaggttatt tggacccatt ctcttgacaa gccccacccc aa #ctccagtc 73980 tgtgtgcctc agtttcccgt ctcagtcctt aggaacacta tgtttattta tt #tatttatt 74040 tgtttgttta ttttgagatg gattcttgtt ctgtgaccca ggctggagtg ca #gtctcatg 74100 atcttggctc actgcaacct ctgcttccca agcgattctc ctgtctcagc ct #cctgagta 74160 gctgggatta caggcatgtg tcactcggct aatttttgta tttttagtag ag #atggggtt 74220 tcaccacgtt gcccaggctg gtctcgaact cctggcctca agtgatccac cc #acctcagc 74280 ctcccaaagt gctgatatta caggtttgag ccaccccacc tggcctggga ac #actatttt 74340 ctaacattgg gccagtttgt ttcatttatg cggcaatggc gctacctagt gg #ctcaatgg 74400 agaagggcgc agagggtaaa caccagccca cagcagggct tggaaaaaca ct #caaggaat 74460 gtgagcagaa gatgaacatc tctgtctggg ggaaaaatgg tatcattaaa ct #gtagcaac 74520 ctcagtgtcc actcctcctt caccaagacc tcacggtgat gttaggaact gt #ctaccaag 74580 aggcaggtaa agtacacaag caaagtaaca tggtgcatta tctatggata tc #ttgttggt 74640 ctcatctaat tttttttttt tttttttttt tttttttaga aggagtctca ct #ctgtcgtc 74700 caggctgcag tgcagtgatg tgatctcagc tcactgcaac ctccacctcc cg #ggttcaag 74760 tgattctcct gcctcagcct ctctagtagc tgggattaca ggcacatgcc ac #catgcccg 74820 gctaattttt atattttcag tagagacagg gttttgccat gttggccagg ct #ggtcttga 74880 actcctgacc tcaagtgttc tgccggcctt cacctcccaa agtgctggga tt #acaggcgt 74940 gagccaccgt gccccgcctg gtctcatctg atttttagca acggtggggt ca #acctgatc 75000 aattgccctg aattttccca cgttcttcct ctctccctct ctttcttcct aa #tgatgaca 75060 tttatgtact gcacatgaag ccctgtctga gtgccttatg ttgtaattgc ta #agcacctg 75120 cctattgttt gcaaggccct ggaatacaag gtgaagacac tggaaaaagt cc #tggcccct 75180 agccctagca aaaacaatca tatgcatgag cattcgagtt ttttttggaa ta #ttcagcaa 75240 ttacaatcaa aatgccatta acagttttta caaggccagg cacagtggct ca #tgcccgta 75300 atcccagcac tttgggaggc tgaggtgggc agatcacctg aggtcaggag tt #caggacca 75360 gcccagccaa catggtgaaa cccagtttct actaaaaata caaaaattag cc #agatgtcg 75420 tggtgcacgc ctgtaatccc agctactcag gaggctgagg ctggataatt gc #ttgaacct 75480 gggaggtgga ggttgcagtg agccgaagtt gtgccattgc accaaagcct gg #gcaacaca 75540 gtgagactct gtctcaaaaa aaaaaaaaaa atcaaaagga tactatttca cg #acatatga 75600 aaatgatatg cacttcaaat gtcagcatcc ataaatagag ttttattgga gg #aataccat 75660 gcctgtttgc ttagtatggt ctacagccac ttctgcactc caagggcaga ga #tgaatatt 75720 tgcaggagag gtggtgtggc ctccagtgta aaaagcatct actgtcttat cc #tttatgga 75780 aaagtaacta atgataatat tacaaatacc tacagggtac agttgtgtgc ct #ggcaccct 75840 tttaagtgct ttctacatat gggctcgttt aatgcctcag cccctctggg gc #aggagtgc 75900 tactgttaat tatgatcctc acgttggaga caagaacagg aggcacagag ag #agtagggt 75960 ccttgcacac agattcacaa ctgataagtg gtcagaagga ggatttgagc ct #aggcagtt 76020 cccgatacag agtctaattt tatttttact tttatttatt tgttggagac ag #agtctcac 76080 tctgtcaccc aggctggagt gcagtggcat tatctcagct cactgcaact tc #cacctcca 76140 aggctcaagc gattctcctg cctcagcctc ctgagtggat ggggttatag gc #acccacca 76200 ctatgcccgg ctaatttttg tatctttcag tagagacggg gttggccagg ct #ggtctgga 76260 actcctggcc tcaagtgatc cacctacctc accccccaaa ttgctgagat ta #taggcatg 76320 agccactgtg cctggcccag agtctgattt taattttaaa aaagaaaatc ct #ataccaca 76380 acgttaaagg aatgaagttg gaaagtaaat gttttgtttg ttttgtttgg tt #gtttcctg 76440 atggctactt tgtgtttttt gaacactaag tagcaatttt tccccctaaa at #gttctcct 76500 cttgtgtttt gtggacagtg gctatggtgg tgcctcaggg ttactggtaa ct #tcaaaaca 76560 tggttaactt gcctactggg taccctaata gcacatgggg aagtatcaac gt #catcatca 76620 tcatctttct acagaggaaa ctgaggccca gagagggtga acttcctgcc ca #aggtcaag 76680 tgaaggtcat ccttattgag gacttttccc atcgtatcag acaatagtag gc #aaattgag 76740 acaggattgg aggaggagga gaaggaggag atgggggtgg aaggggagga ga #aaaaggag 76800 gagaggaaga agaaagggaa gagaaggaga gggaagagca gagggaagag ag #ggaggacg 76860 gtagaggaga agaagggaga agggaagaag tgggagggaa gatgacaggg ag #cagaaagg 76920 aagaagaagg tggagcagga gagaggaaga ggaggaggag ggggaaggag ga #aaaggaag 76980 gggtgcagga agaggagggg gtgcgtgggc agaaggtggg agagatgcag ga #ggagggag 77040 ggtgcaggga ggggtgcaag aggaggaggg caggaggagg aggctggggc ag #agggagag 77100 gggaggaagc cttatgagct tctacaccag gaatggaatc cagggtgatg aa #ggcagaac 77160 aagggtaaaa cctttcatgt gcctctctga caccaacctg gttctcccac ag #cctcagac 77220 ttgccctaac cctggggtca cagcggacct cttccagcct cttgaatgct aa #gtcaggag 77280 gaggaagggt gggaggggga aggacgaggg ggagaaggag ggggtggggg ac #tccgttca 77340 aatcccgtct tcctcctctg gcatacctgc cagagataga cgaagcagac ca #cgatccag 77400 acgagaggca gccacagccc gttgaggtag aggacgctct cggtcagccg ct #gcacgtcc 77460 acggacacca gattgaccac atcacccacc gcactggcct ttctggagcc gc #tggacaga 77520 gccaggacct ggcgggtggg cagaaggaga gaagtaaagt ggggaggccg gg #gcagaggg 77580 atgccccagg tggcttctcc acccactgag ccccacctca cacgtctgcg ag #gtgggtga 77640 gtaaagtctc ttaggccaac ctctcagggc tctttgagga tccacagaga tg #acaaaaat 77700 gaaaatcctc caagatccct aaagcacggg aggcataata atgaataaca tg #cacgaaaa 77760 caccagatta acacagataa cggtggtcat ctgcccagtg ctcaccatgt cg #caggcact 77820 gtgctaaatg aacagcctta tcctttcccg gggtgctcac agccatgaat gg #taccaagc 77880 aggcactacc atattcattc cctctaatgc caggccaggt gcagtggcct ct #gcctgtaa 77940 tcccgccact ctgggaggct gaggtgggag gattgcttga tcccaggagt tc #gaaaccag 78000 cccgcgcgac atagtaagac ccaagctcta caaaatactt taaaaaatta gc #cagggggc 78060 cgggtgcggt gcctcacgtc tataatccca gcactttggg aggccgaggt gg #acagatca 78120 cctgaggtca ggaggtggag accagcctgg ccaacatggt gaaaccctgt ct #ctaccaaa 78180 aatacaaaaa ttagccgggc atggtggcag gcacctgtaa tcccagctac tt #gggaggct 78240 gaggcaagag aatcgcttaa acccaggagg cagaggttgc agtgagccca ga #tcaagcca 78300 ttgcattcca gtctgggcaa caagagcaaa atccatttcg ggggggaaaa aa #gaaaaaat 78360 tagccaggca tggttgtggt gcgcctgtgg tcctagctag ctactgggga gg #ctgaggtg 78420 ggaggattaa ttgagtacag gaggttgagg ctgcagtgag ccatgttggt gc #cactgcac 78480 tctagcctgg gcaacagagc aagaccctgt ctttaaaaaa aattctatgg at #aaattgct 78540 ctctattatt ctctcaccaa ggaaaatacc acttccagtt aaattaagac at #gtaagaga 78600 catctcgatt ttggaagtat tagagtgaaa aaaaaatgtg agacgagaat ca #atgaaatg 78660 aacatttact aaccccattc tatggctaaa gaaactgagg cagagagaag tt #gagcaact 78720 tgcccaaagt cacaggcctt gtaagctcct acacaaggaa tggaatccag gg #tgacgaag 78780 gcatgacaag ggtgagacct ttcatgtgct tctgtgacac caacctggtt ct #ctggcagc 78840 ctcacatctg ccttaaccct ggggtcacag tggacctctt ccagcctgtt ga #atgctaaa 78900 ttccaaatgc agccctccct ttgtgactgc gtgagggtgt gaagaagtga tc #caggaatg 78960 actggacata gaaattctcc acttagcaag tctttgaaga gtgctcactg tg #tgactcac 79020 actgagctgg gaactgaaaa tacagctgtg aacaacagag atgaggcttg ct #ctcccggg 79080 cctggagttt gaggtgggga acaaggctct ataataaaga tttatataac tg #gccgggca 79140 cagtggctca cacctgtaat cccagcactt tgggaggctg aggcgggtgg at #tgcttgag 79200 gccgggagtt cgagatcagc ctggccaata tggcaaaacc ccatctctag ta #aaaataca 79260 aaaattaact gggcatgctg gtgggcacct gtaatcccag ctatttggga gg #gtgaggca 79320 ggacaattgc ttgaacccag gaggcagagg ttgcagtgag ccaagattgc ac #cgctgcac 79380 tacagcctgg gtgacagagt gagactctgt ctcaaaaaaa taagacaaaa ca #aaaatatt 79440 tctaaaactc atgctttaat ggcagttatg atgagtaaca taaaaaagta gc #ccaggctg 79500 agcgcgttgg ctcatgtctg taatcccagc actttgggag gctgaggtgg gt #ggatcacc 79560 tgaggtcagg agttcgatac cagcttggcc aacatggtaa aaccctgtct ac #taaaaata 79620 caaaattagc cgggcatggt ggcgcacacc tgtaatccca gctactcagg aa #gctgagac 79680 aggagaatca cttgaaccca gggggcggag gttgtagtga gccgggactg tg #ccactgca 79740 ctccagcctg ggcaacaaga gcgaaactct gtcagaaaaa aaaaaaaaaa aa #aaagccca 79800 gaggttagag aggagggatc tgatctcatc aggagatcaa agaaggcctc ct #ggcgtgtg 79860 ggtggggaat aggaagatca atgcctgctc accaggcggc cttcctctta gg #ctcaagga 79920 aatgtggact ctcaagacag gatagggcac acctagctct ggcatgctca gg #ggaacagg 79980 agcctgggat gcagcactct ggcaggaaag catcaagagc tgccctctcg gc #cacctagg 80040 agctgtcccc tctgtcccct cctcccctag gtgacagctc aggtgtcagg ga #atgacact 80100 tacatgggac gggacctgcc ctggctcaga tgctccatac cccacaggag cc #aatagctc 80160 ttggggcagc agtccaggga cttagcttcc agagtcccag gaacggacaa ga #gccactgc 80220 acagagagaa gtctaaagct atggcctcca accaggtatt cacagtcaat gg #acagaact 80280 tccagcccag atgcaatttg ggtttttttg ttttgttttt tttttgttct ga #gacgaggt 80340 ctcgctctct tacccaggct gcgctgtagt ggcgtgatct cagttcactg ca #acctccac 80400 ctcccgggtt caagcgattc tcctgtgtca gcttcccaag tagctggaat ta #caggcaca 80460 tgccaccatg cctggctaat ttttgtattt ttagtagaga tggggtttcg cc #atgttggc 80520 caggctggtc ttgaactcct gacctcaagt gatccgcctg tctcagcctc cc #aaattgct 80580 ggaattacag gcgtgcacca ctgtgcccag cctaggggtc atttttaccc ca #agcagtat 80640 tgtctgggaa cacagctgac aggccacctt atcagaaggt taatccttta tc #ctcaaggg 80700 ggaatgagtg gaagttaaaa tcaggctcaa aaattaaaat tagattgggg ga #gtagaagt 80760 ggtgcctaga cagtgagaac agctgcaaag gccccagggt gggtgggggc ct #ggagtgtt 80820 tgaggaactg aaaggagacc tgtgtggctg gaggagagtg agcatgggag ga #ggtgacgg 80880 gatgaggtca gagacaccct agggacagat cacacaagac cttacaggaa ta #actaagga 80940 gctgagacag atcacttgag gctaggagtt cgagaccagc ctgaccaaca tg #gcaaaacc 81000 ttgtctctac caaaaatata aaaattagct gggcgtggtg acacgtgtct at #agtcccag 81060 ttactcagga ggctgaggca ggagaatcac ttgaacccgg gaggcggagg tt #gcagtgag 81120 ccgagattgc accactgcac tccagcctgg gtgacagagc aagactccat ct #caaaaaaa 81180 taaatacata taatacagag aaataactaa ggaagtgaga atgtatggtg ag #tgactcta 81240 ataagcaagg actgaatgcg ttctcagctg ctgataacat tactgcccgc tc #agtgatac 81300 tgcttttcct ggctgggaag acctgccctt gtcccccagg gctcaccttt ct #gtacacca 81360 ggccagtgat ggccgaccgc aacctcatct gcagcacctt gagcctgtac at #gttctgct 81420 gctcaaacag cgtttgcagg caggctgaga ggaacatcag cacggcgagg ag #gtagccct 81480 tccaggctgg aggcttggga tcaccaataa actccaggaa aaggcttgca gg #ggaaggag 81540 ggagaaggta cagctggtga gaggaggtgc ctaagggtgt tgcctttgcc ca #aaccagtc 81600 cagatgtgga ggatcagtcg gcccaaacta gtccaggtgt ggaggatcag tc #agtgtggt 81660 tttttttgca ataatggtct ccgttatttc ccccactgtc catactcctt tt #caatctga 81720 ctgcagctcc tcaagatcaa gaggtggagt ttttgttccc acttgttata gg #ctaaattg 81780 tgtcctcaca aagtttatat gttgaagccc cgacccccag tacctctgaa tg #tgactgta 81840 tttggaaata gggcctttaa agaggcaatg aagttaaaaa tgaggtcatt ag #gctgggcc 81900 ctaatccaat ctgactgggg tccttttaag aagaggaaat gtagacacac aa #ggagacac 81960 cagggggcgc aaacagaaga aagaccatat ggggacacag ggaggaggtg gc #caactgca 82020 agccaaggac agaggcctca gatggaacca ccttgcagat actaatctcg aa #cttccagc 82080 tttgagaatc atgataaaat acatttctgt tgttcaagcc actcagtctc ag #tctgtgat 82140 gctttgttat gtcagctgag cagacaccac ttgaatctgg gctggctaca aa #accggctt 82200 tggccaacag agtacagtgg aggtaaagcc atgctggctc tgagcctagg cc #tcaagaga 82260 aaatgtggtt tttggtctat ttcttagaac cctcccaagc acccacatga ac #aagtctga 82320 gctagccttt tggaggatgg ggacccacat ggagcagaga cagccatccc ag #tctcagat 82380 acacaactgc aggcacatga gaaaacccag ccaagaaaag aaccaccacc ca #gctgagcc 82440 cagcccacat tactgaccca cattaccatg aactaaataa aagaatgttt gt #cattttaa 82500 gccactcact tttggggcat tttacagcaa aaactaattg atgcagtcag gt #aagagctt 82560 gcttatttgc ccttctgggg gtcagtcact ttctcattaa tccatttccc tt #cctcagtg 82620 tccttctcac ccaccatcca gtgtcccgag caccagatgt ataggcagag gc #aggagagc 82680 tgaagccccc tggccctgga aggatgccac taagagacca cccaccttag ca #gggcactt 82740 gaggtctggg actcacctga gcagcttggg gacagtgaac ctgaagacat ca #ctgatgat 82800 gaggctgagg gtccccagga ggaaggtaga atggaacacc tgccagatgg cc #ttcagcag 82860 tgggcgccac tggctccctt cttgccgtag gaagggctcg gtctctggag cc #ttcatgcc 82920 actgccgcct ttccttttaa atgctattgc cttgttgtgc ctgaggggaa gg #gagagatt 82980 agctctgggt cccattttat actctcagcc gccagcggca gggccaggca tt #aaagggtt 83040 gttttcccaa cagtggagat gggtgggtgt ggatctagcc tggctccctc ac #ctgttcct 83100 ccttatcacc ctgagtaccc acttaagagg caatcatggg agttgggggg ca #gggcagga 83160 gggcactctg aggcctctta gatggccatg ggaaagcaca cctgttgagc ac #ctactatg 83220 tgccaggcac tccccagtca tcctaagacc ccctgagaag ccaggtgttg tt #cccatttc 83280 acagatgaga aaactggggc tcagagaagc gaacttgccc aagggcacac ag #ctgagaag 83340 taaaagaact ggaatttgat tccagctctc tgcctccaga gcccatgcac tt #ttcttttt 83400 tcttttcctt tttttttttt tgagacgaag tcttgctctg tcgcccaggc tg #gagtgcag 83460 tggtgtgatc tcagctcacg gcaacctcca cttcccagtt caagtgattg tc #ccacctca 83520 gcctctcgag tagctgggat tacaggcaag tgccaccata cccagctaat tt #ttgtattt 83580 tcagtagaga aggggttatg ccatgttggc caggttggtt ttgaactcct ga #cctgaggt 83640 gatctgctcg ccttggcctc ccaaagtgct gggattacag atgtgagcca cc #acacctgg 83700 cctctcatgt acttttcaac ctatcgtgtt gtcaacctgg aggaagaaca gc #accccgtc 83760 cccaacacac acaatcatcc agcccttagg tggttttgaa ctggtggaga at #cacggctg 83820 atgggcatgg ggcctggtgc tctagctctg ggtgaaagtg cagacagaag ct #caggctgc 83880 ctcaaactaa taagatcccc agcctttggc tataaccagg ggccacagag aa #gagctaag 83940 gtgagggagg gagaggagga gatgggggag gcccgagggc ccctgtgagg ca #ggtcagaa 84000 gccctgggcc agaaaggaga ggctggggcg atgcagctgc tgacagtccg gt #tgctgtgt 84060 ggtcctgggc ggggacactg ctcctctctc tgtgtgtgag aggatgggtg tg #gtcccctg 84120 ctgagtcccc tgtggctctg acaacctata aggttatcag taatttcttt tt #ctttttct 84180 tttctttttt tttttttttt gagacagagt ttcgctcttg tcgcccaggc tg #gagtgcag 84240 tgtagcaatc tcggctcacc gcaacctctg cctcctgggt tcaagcaatt ct #cctgcctc 84300 agcctcccaa gtagctggga ttacaggcac acaccaccat gcctggctaa tt #tttgtatt 84360 tttggtagag acagggtttc acaacgttag ccaggctggt cttaaactcc tg #acctcagg 84420 tgatccacct gcctcggcct cccaaagtgc tgggattaca ggtgtgagcc ac #catgcccg 84480 gccacttatc agtaatttca atccccatta cagatctgtg acccggggcc ac #gtgctggg 84540 atcagctctt tacacgaagg agctcactga ctcccctgga tccccttgcc ag #gtgagcat 84600 tattaggttt tccattttac agaaggggaa gctgaggctc tgagagatgg cg #acagccgc 84660 ccgaggtcac acagcaaggg cagagcaggg atttgagcct agatcttgat tt #atggtttg 84720 taaagggttt cttgtgcact aaggaccccc aacctcacca taataaaata at #aataaaaa 84780 aagaagcata agaaaaacct ctggtgagct caggtggcca gacccttcaa gg #ccaaggtc 84840 tctgtcccac attattggtc tgatctggtg tttggtttgg catctatgga gg #gttgtggt 84900 tcagctctgt tactgagtgg gtgtggcctg ctgctcacaa atattttggc at #ttggatct 84960 caaagccaag aagatgcccc ttccatacag agagcatccc tgcccaccct tt #cctgtttg 85020 atcctgccat ttaattcatt gccttcacag ccatgtccat ggctccaacc ct #ctctttgt 85080 ctcgttagaa ccccaggtgg gtagactttg cctgtgtttt ccaccaagat gt #ccctagta 85140 tagagtccag ctcctgcaca cagtaggagc tcaataaaca cttgtcaaat ga #atgggaaa 85200 aacagattga gtgatgtgtg caaagggcct aataagagtg ccccctgcac at #actgttat 85260 aaaaatttat agaaggaagg aaggagcttg gctgggtgga cagaacttgg ct #ttggagcc 85320 aggagactgt ggttccaatg cctgctctgt ctcctctcct ctgagcctta gt #gtttccat 85380 ctgcaaaatg gggtcgggga agagttcact ggaaagtttt ctttctggct ga #ggttctgc 85440 tcagttctat ttgagctgtt taacccagag agtcagtgtg ttcagcctgc ag #gctccata 85500 gcaagtgttt tcctctcctg caggtctcac ctcccatcaa ggaagatgtc ca #gattgctg 85560 tctgacgtct ggtctctgga ctgaaggcca tttagtgcag atctcacaaa tg #atggtggg 85620 gcaaggcagg gggtatgcat gagtggcatg ggcaaggtgt gagttggggg at #acaaaagg 85680 gagtggtgga ggccgggcac ggtggctcac acctgtaatc ccagcacttt gg #gaggccaa 85740 tgcgggcgaa tcacctgagg tcaggagttc agggccagtc tgatagcctg ag #caacatgg 85800 agaaaccccg cctctaataa aaaatacaaa aattagtgaa gccgactgga cc #agcaggtg 85860 gctgttgtgt ggcctctcag gaggacgccc tctcccttcc cccagtggtt gc #aaaatact 85920 tcagaaagaa aaccaaagtt ctctgtgggt gcagtcggtt gtttcagaag ct #gacggagc 85980 ctggtctttg tataacccca tctttcccct ttctttctgt caactgttta tg #ggaggatt 86040 ctcaaactgt tctggagaat gtttctaccc tttagttcta gtgttgggtg ac #ctgtaatt 86100 ttcatgttgg ctggggatgc caggagttgg cagaggctcc ttccagagcc cc #tgtggact 86160 ggattctgcc acttccgtaa aatcattcaa aagtagaggg tgagtcaggt gc #agtagctc 86220 acatctgtaa tcccagcacc ttgagaggcc aaggcaggca gatcccctga gg #tcaggagt 86280 tcaagatcac cctggccaac atggtgagac cctgtctcta ctaaaaaaaa tt #taaaaatc 86340 agctagatgt ggtggcacac gcctgtggtc ccagctactc agaaggctga gg #caggagaa 86400 ttgcttgaac ccaggaggtg gaggttgcag tgagctgaga tcataccaca ac #ccagtgaa 86460 gggggtccag caagccatgc ctggggtgag agagaactga tgttttggtt ct #ctcacact 86520 acttattctg tttggaaaaa cacatgccct tcctttgtgg gaacagcccc ta #cccacttc 86580 tgtggctctg aagggaccac cagtcatggc accagccccc tgggcatggg at #tggcccct 86640 gacaggcaca tgacttgagc caggccaatt agaggccttc cttgggattt ac #tatatgga 86700 cgttaggaga gagatgctct cttattctgc tggagtttgc tgaacttgca tg #ggaaggga 86760 taggccttat ggagagacca acacatagat aatagttggg atgggagatg aa #aggagaga 86820 atcctgacat catttgagtc ccctgatcca gcaacacctg aggctagatc ct #cttagctg 86880 tgtgagccta tagtatcagt ctctgtctcc tctgtctctc ttaatgtgtg gg #attcagcc 86940 atctgcaaca actaccacaa aatcccggag tatgcaggga acttcccaca ga #gctaactt 87000 ccttttttgt tctgtctcct aaaacaccaa gatccggtga ggttaagcaa cg #tgtccaag 87060 gtcatcacta tttgaaggca gggcagcatt taacccaatt ttatctaatc ct #atgcaggc 87120 tcatttatct agaccagagt ttctcaaatg aggcatccca ggctctaagg gc #tgcagaga 87180 agtttccaga gatgccactg agggcaggag tggacagagt ggataactcc aa #agatctta 87240 acaccctctg gatgactaac agtgcttgag cacttcccat ttgcaagaca tt #tgcaagtt 87300 cttttccata aatcatcctt ttttttcatc cccataagct atgagctggg gc #taatgaca 87360 tccccactga acagatgaga aaactgaggc ccaggaaagg aattgctcag gt #tatatagt 87420 aagtgagcag ctgcttgtgt gttgagtcac ctcccaaccc tccaccccgg cc #ttaaaata 87480 cctcttctgt ttgctgcctg tcattctgcc atttccccat ttgtaggaac ct #gtttgttc 87540 cccgtttgta ggaacctgtg atgcgttctg ggaggaacca tatcttaagc ct #gatactac 87600 ttagtgggat cagctggaag gcaaggtggg gaggcggcag tgccgccaga gt #agcgttgg 87660 gggctggact gggggtcaaa tgatgaggtt tttttgtttt tgtttttgtt tt #tgtcttgt 87720 ttgtttgttt ttttttttga tacggagtct ggccctgtca ctcaggctgg ag #tgcaatgg 87780 tgacatctcc actcactgca acctctgcct cctgggttca aacgattctc ct #gcctcaag 87840 cctcctgagt agctgggatt ataggtgcct accaccacgc ccagctaatt tt #tctatttt 87900 tagcagagat ggggtttcac tatgttggcc agattggtct tgaactcctg ac #cttgtgat 87960 ccgcctgcct cggcctccca aaatgccggg attacagtcg tgagccaccg ca #cccggcca 88020 atgatgagct tttctgaagt agcatcaggt gagttcttga cctccaccca ct #tacctccg 88080 ggctgcactg cggttcctca tccactcctt ttcaagccgg gaaacaagtt ct #tctgagga 88140 gttttctctc ccaagcgacc agaggtcttt tggtctcagt ggcctcctgt at #cccctcca 88200 gaccaggctg caaaagaggg gcaccaggga aagcttttcc tgccattcac cc #ctgcagga 88260 tcctggccag gcgagtagct gtgtgaccct gggtaagtca ctttacctct ct #gtacctct 88320 actggcccct gggtaaaaag aaagcaattc actaacccca cctaatgtct gc #agggcatt 88380 tctcgtttca caaagattgt ctcattaatt cttacatgaa cccataaggt ag #gttattat 88440 tgtttgtttg agatggagtc ttgttctgtc tcccaggctg gagtgcagtg gt #gcaatctc 88500 ggctcactgc aacctccacc tcccaggttc aagcgattct cccacctcag cc #tcctgagt 88560 agctgggatt acaggcaccc accaccatac ccggctaatt tttgtatttt tt #gtagagat 88620 ggagtttcac catgttggcc agactggtct cgaactcctg acctcaggtg at #ccacctgc 88680 ctcagcctcc caaagtgctg ggattacagg catgagccac cacacccagc ct #gtaaattg 88740 atagtttata attgtataaa tgtatgagta tattattata gatctatttt ac #agatgggg 88800 aaggaaatag aagtgcagag agattcagtg gctaaaccaa gggatagccc tt #ggcaaggg 88860 aaacagacat ttccctggga atcagaagtc cgttgaccaa aactatcatt gt #agaagaag 88920 cttgaactcc tccctcagct tttttttttt aattattatt attttttttg ag #atggagtc 88980 tcactctgtt gcctaggctg gagtgcactg atgtgatctg ggctcactgc aa #cctccgcc 89040 tccctggctc aagcgattct cacgcctcag ccttctgagt agttgaaatt ac #aagccacc 89100 atcacacctg gctaattttt gtgtttttgg atggtgtatc accatgctgg cc #aggctggt 89160 ctcgacctac tggcctcaag caatcctccc acctcagcct cccaaagtgc ta #ggactaca 89220 ggcgtaagcc accacacctg gctaattttt ttgtttatag tagagatggg at #ttcgccat 89280 gttggccagg ctggtctcga actcccggcc tcaagtgatc tgtcagggtt gg #ccttccaa 89340 agtgttggga ttatgggtgt gagccactgt gcctggcctc aggtctcttt aa #tctttctg 89400 atgacaccag ccagaaggtc ttgcctggtt ctggtctctg actcttctct aa #gccttacc 89460 aagttccctt ttctttttta tttttattct ttttattttt ttgagatgga at #ctcactct 89520 gttgctcagg ctggagtgca ctggtgtgat ctcggctcac cgcaacctcc ac #ctcctggg 89580 ttcaagtgat tctcctgcct cagcctcctg agtgactggg attgcaggct cc #caccacca 89640 cacctggcta atttttatat ttttagtaga gatggggttt caccatgttg gt #caggctgg 89700 tctcgaaatc ctgacctcag gtgatccacc tgcctcagcc tcccaaggtg tt #gggattat 89760 aggcgtgagc cactgcgcca ggccaccaag ttcccttttc taatgcagag cc #aacttggg 89820 gaagcaaccg ttctgacata gaaattatta acgtggcttg attttccctg aa #attatttt 89880 tggagttctc ctatatggca agtgatgcta tagatttttc ctattttagc ag #tgatagag 89940 agtttctttt taaaaacagt ttattcgagt aaaaaaagtg actcaattta gt #ttttgccc 90000 cagtaggaca aaaaagcatc aagagtggtc cataaatgct taagtttggg aa #gcaggggc 90060 tggacccccc agtagagctg tttcgaaaac ctctaagctc tttctaccag tt #ccacacat 90120 tcaaagcctg atatttttca tttatttaat agccatttag gccgggtgcg gt #ggcttatg 90180 cctgtaatcc cagcactttg ggaggtcgag tggggtagat cacttgaggt ca #ggagtttg 90240 agaccagctt ggccaacgtg gtgaaacccg gtctctacaa aaaactacaa aa #attagctg 90300 ggcatgatgg caggcgcctg taatcccagc tgctcgggag gctgaggcag ga #gaattgct 90360 tgaacctggg aggtggaggt tgcagtgagc tgagattgtg ccattgcact gc #agcctggg 90420 caacaagagt gaaactctgt ctcaaaaaaa aaaagagaaa atgaatagcc ca #ggcacagt 90480 gggtcacacc tgtaatccca gcactttggg aagccgaggc gggcagatca cc #tgaggtcg 90540 ggagtttcag atcagcctga ccaacatgga gaaacactgt ctctactaaa aa #tacaaaat 90600 tagccgagca tagtggtgca tgcctgtaat ctcagctact cgggaggctg ag #gcaggaga 90660 atcgcttgaa cccaggaggc ggaggttgca gtgagccaag atagtgccat tg #tactccag 90720 cctgggcaac aagaacggaa ctccatctca aaagaaaaaa aaataattac ca #cttaaact 90780 cattatttgc caggccctgt tctaagtgct ttacagatct catcttattt aa #gcttcaca 90840 accctatgag ctaagtgcta ctatcaatcc cattttgaag gagtggagac tg #aggcacag 90900 agaggttaag taactgtcca aagcaacaca gctaggaagt ggtagggcca gg #attcaaat 90960 ccatatgtca ggtgctactg aggtctgaat gccgtgtggt taggagagag ca #catcctca 91020 agtgccttgt gagctggccc tggagaagca gctgttttct caatctgcct gg #aaccctct 91080 agaaagtaga cacttgctcc tttatctcct cacccctggg gcttagcaca ta #gtaggtgc 91140 ctattaaatg ttggtggaat gactgaaatc aagtattgga gacaattcta at #tactatta 91200 agcacccgct gtgtgcaagc actaagcact ttccgtctca tgcaggttga gt #catcccca 91260 ttttacagag ggaaaactga gactccggag gtttgcgaca tggcctgcta ac #aggcagag 91320 ccgggattca aatcaagatc tcactccagt gagtgaatgg gaacaggatg ca #gatggtag 91380 acactgaaca cgaagaagaa agcactgagg ctgggatgga gaaagacttg ct #ggcctttg 91440 taagcacagg ggaagggcca tggctgggaa tcagagcagc aaatgcaggc gg #gtgaggca 91500 ccaccccaac ccttccgtgc gactttactt acccagaaac ccaccagaac gt #ggctttgg 91560 aggggaaggc tgccccagtc tctggacagg ggttctgcaa cagacaaaaa tg #gagaaggg 91620 aagtatgtgg caagggtagg aagacaggac gaactgtgta tttttttttt tt #tcgagaca 91680 ggttttcgct ctgttgccca ggccagagta cagcggtgtg atcttggctc ac #tactacct 91740 ctgcctcctg ggttcaagcg attctcctgc ctcagccttc caaagagctg gg #atgacagg 91800 tgtgcgccac cacacacagc taattttttg tgtttttagt agagacaggg tt #tcaccatg 91860 ttggccaggc tggtctcaaa ctcctaacct caagtgatct gcctatctcg gc #ctcccaaa 91920 gtgctgggat tacaggcatg agccactaca cccagccctg acggtgtatt ta #gtactgaa 91980 agtaaacatc gaggtgccct gtctccttgc caggggtgta gaccagtgag ct #tggtgctt 92040 cccagcaggc agcgtaaaaa gaggttgggc cacaggcctg acaatgtcca ca #aggtaaga 92100 aataacagtg gctcagaaga acaactatga ttatactgaa accaaaacct tg #ctttgctt 92160 ctcaaaagga aggacactgc ataacgaaga aattagatcc ttgacaatat cc #ctcggcaa 92220 atgttgtgaa gacagacctg tcgtgcgatt tttgtcaggt gctccaggaa ga #ttacaaca 92280 gtctgtactc tttaccaata aggcgtgaag gtgcccattt caccacgttt tt #gccatcac 92340 agcttattaa tttttaaatt ttgttgctac tctggtaggt acaaaaaaga tt #cctatgat 92400 agttttaact attctcaagc cttcgagcaa tttttttttt tttttttttt tg #aatacagg 92460 gtctcgctct gtcacccagg ctggagtgca atggtgcaat catagctcac tg #cagccttt 92520 atctcttgga ttcaagcaat cctcctgctt tagtctccac agagctactc tg #tagtggga 92580 ctacaggcat gcaccaccac actaggctat ttttaaaaac ctttttgtag ag #atggggtc 92640 tcactacatt gcctagtctg atctagaaca cctgggcaca aacaatcctc ct #tcctcggt 92700 ctcccaaagt gttgagatta caggcatgat ccactgcatc tggccccatt tg #aacatctg 92760 tttatatgat gtcagatcag tctcttccac aaaagaattg tttcttgatt tc #acagactg 92820 cttcactgtt acctattgta aatctctcaa tctctcatga gcttcttcta tg #gagcactt 92880 accccaaggg taattttctt tttccttctt tttttttttt ttttttttgg tg #gagttccg 92940 ctcttgttgc ccaggctgga gtgcaaatgc acagtcttgg ctccctgcaa cc #tccacatc 93000 ccggattcaa gcaattctcc tgcctcagcc tcccgagtag ctgggattac ag #gcgtgcac 93060 caccatgcct ggctaatttt tgtaatttta gaagagatga ggctttacca tg #ttggccag 93120 gctggctttg aactctcgac ctcaagtgat ccacctgcct tggcctccca aa #gtgttggg 93180 attacaggca tgagccactg tgaccatcca attttcaaca tatttgttta at #tttgtgac 93240 cagtgtctgg ttcccctgct tgaccagtag ctacgtgaga acagaaactc ta #tctgcttg 93300 ttcaccatag atccttatgc ccttgctagg gcatagcggg gtttggcaaa ct #atgaccaa 93360 atctggccca ctgcctgttt ctgcaaatag tgttattgca acacagccat gc #aatttgtt 93420 gacatattct gcttttgcgt tcaatggcag agttgagtaa ttgccactga ga #tcactgta 93480 tggctcacag agtccaaaat attttctctt ggcccatata gaaaaagtct gc #caactgtg 93540 gcatcgagta gaaatgtggt acactttttg ctgaatggct aaatgaataa aa #aaattaaa 93600 gacttttggt cacctggggg agactgagac ctcaaagtgg aacaggaatg ag #gttggaac 93660 ttggtgactt acagactgct gggggtcttc agggaagaag gggggttgat cc #gccaggca 93720 ggacagcaca aactgtgcca ccaccagaga caggcatagg taggtggaca gg #tggcggac 93780 agggtcgctc tggaagccct gtgggaggga aagcagaaga taaggaatgg ag #acagagga 93840 gggtgctcag aggagagaaa aggtttctga tcttgggtca gtgcccactc tg #gggaccag 93900 ggcaagagta tttgaaagcc agagccctgg ctttcctagt ggttctaatt tt #ctttcttt 93960 cttttttttt taagacaaag tctcacttgg tcgcccaggc tgaagtgcag tg #gcatgatc 94020 tcggctccct gcaacctctg cctcctgggt tcaagtgatt ctcctgcttc tg #cctcctta 94080 gtagttggga ttacaggtgc ccaccaccat gcctggctaa cttttttaaa at #atttttag 94140 tagagatggg gttttgccat gttggctagg ctgacctcaa actgctgacc ta #aagtgatc 94200 tgcctgcctt ggcctcccaa agtgttggga ttacaggcat gagccaccat gc #ccagcagg 94260 tcctaatttt caaataccca atttataata ttctgtctat acaaatggtg gg #ccagggct 94320 gcgtctgggt tttgtcctta gccacatgat gattggccac agctgctggg ac #aatgagat 94380 gaagaaacaa tttaccttct tctttgtgcc acaaaagaaa tcctttctcc gt #tccaccct 94440 ctaccccaat cttcaaccct gctccccctt ggccagggtt ctctggtttg ca #gagatgag 94500 agctggtttt attgagcact gaccctgccc tgagcacatg cggcattctt gc #catacaca 94560 gtctcatcag ctggagttta cttgcttcct ttgactcagg gggaaaccaa gg #ctcagaga 94620 agtgacagca ccttgttcaa ggacacgcag atgatctggt ccaaattgtg at #gctcctgc 94680 tgccacacca caatgatttt tgcatctgct gccctgtcat ctggtcagaa ac #accctaat 94740 tttctttctt tttttaattt aaagcatttt ttatttttta attttaggtg tg #tgtgtgtg 94800 tgtgtgtgtg tgtgtgtgtg tgtatacttt tttttttttt gagacggagt ct #tgctttgt 94860 cacccaggct gatgtgcagt ggcatgatct tggctcactg caccctccgc ct #cctgggtt 94920 caagcgattc tcctgcctta gcctcctgag tagctgggat tacaggcatg tg #ccacgacc 94980 cctggctaat ttttgtattt ttagtagaga tggagtttta ccatgtaggc ca #ggctggtc 95040 ttgaactcct gacctcaggt gatccgcctg ccttggcctc ccaaagtgct gg #gattacag 95100 gcatgagcca ccgcgcccgg cctgatatat atatttctgg atgacgtgag at #attttgat 95160 acaggcatgc aatgcataat aatcacatca aggtaaatga ggtctccatc cc #cgcaatca 95220 tttatccttt ctgttacaaa tgatccattc tactcttgta gttattttat tt #tttagttt 95280 attattgagt tggagtctca ctctgttgcc caggctggag tgcagtggct tg #attttggc 95340 tcactgcaac ctccgtctcc tggattcaag tgattctcct gccttagcct cc #tgagtatc 95400 tgagattaca gatgtgtgcc agcacgcctg gctacttttt ttgtattttt ag #tagagaca 95460 gggtttcacc atgttgccca tgctggtctt gaactcctga cctcagatga tc #ctcctgcc 95520 ttggcctccc aaagtgctgg aattacaggt gtgagccact gtgtccagcc tc #ttttagtt 95580 attttaaaat gtacaattaa attattattg actatagtca ccctgttgtg ct #atcaaata 95640 gatattattc tttctgtttt tttgtaccca ttaaccatcc ccatttcccc ca #cccactgt 95700 ccttcctagc ctctagtaac cttccatcta ctctatatgt tcatgagtta ca #ttgtttta 95760 atttttagct ttcacaaata agtgagaata tgtaaagttt gtctttctgt gc #ctggctta 95820 tttcacttaa catccatgtt gttgaaaatg acagtacctc attctttttt at #ggctgcat 95880 agtacttcat tgtgtatata taccacattt tctttatcag ttcgtctgtt ga #tggacact 95940 taggttgctt ccaaatcttg tttattgtga acagtgctgt aataatcatg gg #agtgcaga 96000 gatctcttcc atgtactgat tttctttctt cctaagtttt ttgcttgtgt tc #gggcgtgt 96060 gatttgtgca gaactgactc tactccgagg ctgggtgggt gaatgaggcc tg #gccaacga 96120 atacgttctg gtcttttggc taccatggca gggttaggaa tgcacatagc ac #cccatgct 96180 gggtacttga gagctggaac catcgggaga ttctgctggc tttgctacat gc #tagaatgt 96240 aagtgtgaag gtattggtgg ctcttcttgc cactccattg gagaatcaag ct #aacatggc 96300 agagccaaga ggcagaagtg gagatctggt gatggtacct ggtcccaggc ct #ggatcagt 96360 catgcctggg agatcccatg ggtatgagct aataaatgca tgagctaatg aa #cccccttg 96420 acttaccctt ttcattaagc tagtgtgaac tgaggtttta tggctttaaa cc #agagccct 96480 agttttaaat catgattcct ctactggatt ttatactctt ctagttttgg gt #ttttgttt 96540 gtttgtttgt tttttggcag atagcagaca attggatatt ccaatgacaa ta #tggcccat 96600 cttccctaaa ctcccactgt tttccccact gtttctctca gaaagtttgt tc #tgaatttg 96660 cctgagatga actcgggctc tgcactccca agctttgtgg ccctgaggcc gt #cattccct 96720 tctcctagcc ttagtctccc tcatctttaa aatgggacgg ctagaattca tc #attggctg 96780 gggcacattg gctcaagcct gtaatcccag cactttggga ggcttaggtg ga #aagatcgc 96840 ttgagcccag gagtttgaga ccagccttgg gaacataatg agactttgtt tc #tatttcta 96900 tttaaaaaaa taaagaaccc atcactgtga actcttgtga gaatccagtg ag #gagacgtg 96960 tgtaagtgcc tgccacagtg cctggcacat ggttggaacc ccagaatgta ta #tggtccca 97020 gtattattgt ttctatgctg tgtcccaaaa agctgactta tgtcaactgt gg #gagcccac 97080 catttcagaa attactgaat aacctgtgga atttcccctt agttacaaag gt #tactcttt 97140 taaaaactct gtcctcggtc aggcgctgtg gctcacgcct gtaatcccag ca #ctttggga 97200 ggccgaggcg ggtgagtcac ttgaggtcag gcatttgaga tgagcctggc ca #acatattg 97260 aaaccttgtc tctactaaaa atacaaaaat tagctgggca tggtggcaca tg #cctgtaat 97320 cccagctact tgggaggctg aggtatggga atcgattgaa cccggaggtg ga #ggttgtag 97380 tgagccaaga tcgtgccact gcactccagc ctgggcaata gagcaagact ct #gtctcaga 97440 atgaacaaac aaaaaataaa aactctgtcc ttaaggacag ggtgatgctt ct #ctaccttc 97500 tcctttaggg gcaggatgga gtaaccactg gactgaagaa atgatctgtg ag #tccagacg 97560 tggtggctca tgcctctaat cccagcattt taggaggctg aggtcagaga at #tgctcgag 97620 ccgaggagtt caagatcagc ctgggcaaca aagcatgatg ttgtctccac aa #aaataaaa 97680 taatgaagta aaatatctga aacctgctgc agcctgttca ttggtgttaa ga #taactccc 97740 tctcccagaa gccttggcta agcacactgt tgaggccagt gcttctcaat ag #gtgggtga 97800 ctttgtcctc ctcaccccca gggacacttg gtaatatctg gagacatttt gg #gttactgc 97860 aattggatgg tatgctactg gcacctatgg gcagaagcca gggatgctgt tt #cacaccct 97920 gcagcaaaca agacagccct gtccacccaa caaagaattg tctggccaca ac #attactaa 97980 agctgaggct gagggaagtt ggtctaggct acatgttttt ctctttacag ag #aaaatgac 98040 ccatcatgtc tcctaataga gaaacgctgc ttccggccga atgacaagag ct #cacgcctg 98100 taatcccgac actttgggag gccaaggcag gtggatcact tgaggtcagg ag #ctcgagac 98160 cagcctggcc aacatggtga aacctcgtct ctactaaaaa tacaaaaatt tt #tagtagaa 98220 atttagtaga aatttttagt agaaatttag tagaaattta gaataagcca gg #tgtagtgg 98280 cacacacctg taatcccagc tacacaggaa gcagaggcag gagaagtgct tg #aacccgag 98340 aggcagaaat tgcagtgagc tgagatcatg ccacttcatt ccagtctggg cg #acagagca 98400 agcctctcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaagc tgcttcccag at #tgggcaac 98460 agaaatacga gtggtgtgca gaatgagtgt gtaaatatag gtgcatagga ac #atggggag 98520 ggtgaatcca tgacatgagg ggaggtgtgc acggaggggt atgtgtgcac ac #aggtgtgt 98580 ctgtgcccag gttgtgtgtg tgtgcgtgca tgcatgtact tgtgcgatgt at #gaatcagt 98640 gcctataagt gtgtgcatcg tgtgcaagtg gcacgtgtga tgtgggcctg ta #agacagga 98700 aattgtgttg ataagaaatg tatgggatga tgggtactga caggtgcggg ag #tggatttt 98760 gtgtctctag agtgtaagtg actggcttgt gtgtgtcact gtatagagaa ta #agttgtat 98820 gtggaaacag gaggagaaag gaagggaccc aaggcatgag ccaccatttt gg #tttcccag 98880 ggtggcccac gccccgactt accgctccgg aggcctgctg ggcagcgttg gt #agctggca 98940 agacaaagca gagaagccag taaccaaaca gcactccaga tgactggact cc #ctttttcc 99000 tctcggtgtg aatcaggaac actgcgaagc tctggacggg aaagtcaggg ag #gcccctta 99060 ggggagggtg ggaggctgag gggagcctct tctcttcccc ttgttctcca ct #gtggcagg 99120 caaagcagca gctgggagga agccgggctc cagactgaag gcatcattac ca #tcgtggtg 99180 agccacacag taggatgaat gaggaattct ggggcctcag gcgttccctg tt #ggattttc 99240 caaagagcga cagccacgct ggaggtacac aggactatga gggcgaatcc aa #gcacctga 99300 ggatacaggc ttagataagc ttggggggca ataagagagg tcacagcaaa ct #ggtaggcg 99360 gccccatgtc caactgggag ctggttctgc aacatcctgg ctgatactga gt #ataccagg 99420 gtcaccagct agcaacgtgc caatgtgaac aatgtgtaaa gggcattgca ga #tcactcct 99480 gacctgtaac tgtcatataa ataatgcaca ggaagggctt gagccaaccg ag #tgttttcc 99540 aaaatgcagg aagtgctcca atcgtgcaca tatgagatga ctttgggtat gg #agaaacag 99600 caggaaatga aatgtactca ccaggtaaaa aactatcctt tctccaagtc at #ttttcaat 99660 ccctgctatg aaatcaagga gcaactctct gttgggccag taagtctcta gg #gtctctct 99720 aatatatttt ggtttctcta ttgaataaaa gaaaggaaga aaatgagaga ac #gtgggcac 99780 accagaggga aggccagagc taggttacgt tggaggaact gctcaaagaa cc #tcagttta 99840 aagcagaagt tggcaaacta tcaatcatca aagaaaaaca aaaagcatat gt #catgacag 99900 gtgaaaatta catgaaatcc aaatttcagt gactacaaat aaagttttat tg #aaacgcag 99960 tcggccgggg gtggtggctt acacctgtaa tcccagcact ttggcaggcc aa #ggcaggca 100020 gatcacctga ggtcaggagt tggagaccag cctggccaac atggcgaaac cc #tgtttcta 100080 ctaaaaatac aaaaaaatag cgaggtgtgg gggtgggcac ctgtaatccc ag #ctactcgg 100140 gaagctgagg caggagaatc acttgaaccc aggaggcgga ggttgcagtg ag #ccgagatc 100200 gcaccattgc actccagcct gggtaacaag agcaaaactg catctcaaaa aa #aaaaaaca 100260 aacaaaaaag taacacagtc atgactattg tctatggtta tgactattgc gt #tcattctg 100320 gaatggcaga gttcagtgtt cggaaggaag attacctggc tcacaaagtc tc #aaatactg 100380 tgtaccgctt ggctctttaa gtttgccaac ccctgggttg gtggcgggtg at #aatgtaaa 100440 aattaataca atggcagaag aatgaatgaa ctctgaagaa cattctttgg aa #gcctacaa 100500 gaatggagta gaagaggatg gatgagcaga aaggctcaca cttggaatgc ca #gtgtttat 100560 ttaacacact aaggtaaata catatcacat ataaaaattg tcctataata ca #gccagtgg 100620 gggaacataa aaataaatgc ataacttttt aaaaggttca tcctaatgtg gc #tctaaaat 100680 taccttgtgt atccaagagt ctacatggta tgttttggaa aatgccaggt ta #tggtagct 100740 ataaactgtc caggaacatg ggagtgtatg cgtatgtttg cgcatgcgtg ga #ttttcgga 100800 attacaaaat ctgtttggga gaaccgtgtt ccactgagtt gacctctgta gc #ctttctaa 100860 tattgctctg tttgattaac agattccctt ctacaccccg ataggaggag tc #tactttaa 100920 gacttcacca ggttccagcc tgtcccctgc ctcccccgaa cattgcctgg tt #ccaggctc 100980 ccagggatgg cagctaccat cttggctttg aagagtgggg acatccacag gt #agccccgg 101040 ccatggtggt ggatgaagag gaggtagatg ggaccaagga cccagaggta ca #tggggggt 101100 acccagaccc ctgctgttct caggaagcac aggctcagca ggctggtggc gg #caggttca 101160 ggctctgtct ggttccagac ctgagggaac acaaagagga cccttaggat gg #tacaaggc 101220 aggggtcccc agctcacctg cccagggggc caggcaactt tttggatctt ta #acatttac 101280 acaaaaatgt accaagtact ctttggaata cctactaatt ctcaattcct tt #catcctga 101340 cattaaccct aggtagttgc aattatattg atttgcagat gaagaagctg ag #gaccagag 101400 aggttgagta actttgctga ctttacccag ctgaggagtg gaagggctgg ga #tttgaacc 101460 cagggaactg ggccatgtgg tctaggagac ctgggctcca taatcattgc ta #ggcatgga 101520 ctgtcagtta atccttataa caactccagg acgcagacag tactgtctcc at #ttcagaaa 101580 ccagcagact gaggcaccag tcggggaact gcctccccca gggacacaca aa #tgggaagt 101640 ggcaaagctg actctgaccc aggcttatct gaccccaaac ctcgttcgac tg #gtggtctt 101700 gatgtatgat ttgtttttat tttttattat taattaattt atgttttaga ga #cagggtct 101760 cactctgttg cccaggctga agtggcacaa tcaaagctca acaaagcttc ga #atttcctg 101820 ggctcaagca atcctcccac ctcggcctcc cagagtgctg ggattacagg ca #taagcagc 101880 ctcaccaggc ctggctaatt tttttttttt atgttttgta gagatggggg tc #tctctatg 101940 ctggtctcga actcctggtc tcaagcaatc ctcctgcctc agcctcctag gt #actgggat 102000 tacaggcaag agccaccggc ccagcttgat ctgttatttt catctcagca gg #tctgctgg 102060 tcctatctaa ccctagaaga aatttgaagt ttagtggacg tggcctcttc aa #ttctctct 102120 ccgctgtctt tttactcctc ctggtttcac aactcaccgg ctgtgcaaac tt #taacctct 102180 ctgtatctca gtttccttcc ctgtaaaagg gggaaaacga gactctacct ct #atgagttg 102240 tattaaatgg attaatagca gcaaagttca tagcagcatg gcacaaggtt gg #gcacaagg 102300 ctaggcacag agaaagccct cagttcattg ccagtttatt gcttcaactc cc #tggccctc 102360 gaaatgctgg cagtttgcaa cccccacccc cactccatga actccactcc ct #ggagtcct 102420 ttgctaagag caatggaaaa agaaaccaga gaggtaaggg ctctccgggg gt #aggagggc 102480 ttgggggacc cactagcttt atgcaaagaa gagtcaaagc ccctagtagc tg #ggaggtct 102540 ggtggcccct taaatagagc tgggctctcg gctgctggct tggtgaaaga aa #tccaaccc 102600 gctgcagtga gggggccgga gtaagtctcc tcgcttcccg ggtccaggaa tt #tgggggtc 102660 tctcctctcc ccagtatcgc agcccgagag atctgcagcc aaaccaagcc tg #gaaaagga 102720 gagtggggcg cgatgggggg cactcacccc ctgccccgcg cagggctcag ca #ggcgcggc 102780 catcggcgcc ttctgtcgtc gtgggtccca gcgtctgtct gtcgctaagt ct #ctgggcag 102840 actgctcggc cgcgatcctg ccggagaaga ggcggggctg ggctggtcgg gc #tgggctgg 102900 tccggctggg attcgagctc cgggatcggg aggccccggg caaggtccag ct #gcgcggcg 102960 ggagtgaggc cacgggaggt gaaaacaggc gaggtggggg atgggggaag ag #aggcgctc 103020 ggggagctgg gacgggcacc gggttggggg gtcccggaac ccctgaaagt tc #agtgacac 103080 ctccatagtt ccctcttccc cctgcaacaa gaatcactcc agacttccta aa #cactttgg 103140 acccagcaat ttccaggagt tcatcctgat gagagaactg aaaggtgtgc ac #acgttagt 103200 aacaaggagg cctggtgacc gcctaagcgt ccaatcgcgg ggaccaccgg gt #cgaggccg 103260 agaggatgga gaccgcgtca caggcacctc gctgctggaa tggagggtgg tg #gggagaac 103320 ttagaagatt atgcaatggg ctggcagggc tatacccagc cgccctggta ag #cagaaact 103380 caagaaacct ctagggtcct gttttctggt cgtatgatcc caggagtgca ca #tgggcccc 103440 tcgggtgtct gaacagaagg gcataggagg gagggccgca gccctgcagt ct #tactctgc 103500 tggtgtagcg gtcacctgcc aactcccacc ccaccctgca ccgcgggctc ct #gagtcggc 103560 agattaagca ttttataaat tctattttaa atacgtgttt taaacttgtc ag #atatttgt 103620 cttcatttca gtccctgcgc ctctacctct tgctgtggtc gcttatttaa ca #ctgggggg 103680 ctacgttctg ctaagtccca gggagagact gttcctaata tccgagggag at #attattcc 103740 taatatcacg ctgggtgaac accacgtgtg tacagcctct gatacgattg gt #aatatcca 103800 agggagatat tatcctaaca tcccagtggg tgaacaccat gtgtgtaaac gc #tgtggtat 103860 tattagaaat atccaaggga gatattactc ctaatatcac agtgggtgta ca #tcctgtga 103920 tattattcgt aatatctgaa ggagatttta ctcctaatat cacagtggga gt #acacactg 103980 tgatattatt tgtaatatcc gagggagatt ttactcctaa tatcacagta gg #tgtacaac 104040 ctgtgatatt attcataata tgctagagat atattactcc aaatctcatg gt #gggtgtac 104100 actctgtcat agaattcgtg atatcctagg gagttattac cgctaatatc ac #agtgagag 104160 tacaccctgt gatattattc atactatcct agaaagatat tacttttaat at #cacagagg 104220 gtgtacaccc tgtgatatta ttcataatat tctatgaaga tataactcct ga #tataaccg 104280 taggtgtata ccctgtgata ttatttgtta tatcctaggg agatactaca cc #taatacca 104340 cagtgggtgt acaccctgtg atatgatttg taatatccta gggagatata ac #tcctaata 104400 tcacagaggg agtacaccct gtaatattat tcataatatc ctagaaagat aa #tactttca 104460 atatcacagt gggtgtacac tctgtgataa tattcgtaat ttcctaggga ga #tactactc 104520 ctaatatcac cttgagtgta cactgcgtga tattattcgt aatatcgtag gg #agctattg 104580 cttttaattt cacagtgggt gtatacccta tgatattatt cataatatct ta #agaaggta 104640 gtactcctaa aatcacagtg cctgtacaca ctgtgatatt attcataata tt #ctagggag 104700 atgttactcc taatctcata gtgggtgtac accttgtgat actatttgta at #gttctaga 104760 aagatattcc ttttaatatc acagtgggtg tacaccctgt gatatgattc ga #aatattct 104820 agggcgatat tactcctaat atcccagtga atttacacca tgcgtgtaca cg #ctgtgacc 104880 tcccagaaag atatgactcc taatatcaca gtgggggtac accctgtgct at #tatttgta 104940 ataccctatg gatatcataa tatcacaatg aacgtacacc attgtgtaca tg #ctgtgata 105000 ttatttgtaa tatttttggg tgatattacc cctaatgtca cagtgcgtgt ac #atcttttg 105060 atattatttg taatattctg tggagatatt gcccctaata tcacagtggg tg #tatactct 105120 ttgatactat tcgtaacatc ctggaagata ttatccatat tgtcacggtg gg #tgtacacc 105180 ctgtgatatt attcgttata ttctggggat atactattac ccctaatata ct #gtgggtgt 105240 accccctgtg atattattca ctatatcttg gagatataat attaccccta at #atcacagt 105300 gggtgtatac tttgtgatat tattcattat atcctgaaga gatattattt cc #tttaatat 105360 cacagtgcat gtacaccttg tgatattatt tgttatatcc tggggagata ct #actatatt 105420 actcctagta tcacagtggc tgtacgcctt gtgatactat tcattatatc ct #ggggagat 105480 attattactc ctaatatcac agtaagtgta taccctgtga tattattcat aa #tatcctgg 105540 gagatattac ccatattgtc acagtgggtg tacatcctgt aatattattt gt #aatatcct 105600 ggggagatat tattactcct aatagcacag tgggtgtaca ccctgtgata tt #attggtta 105660 tatcctgggg aggtattatt attcctaata tcacagtggg tgaacattct gt #aatattat 105720 tcattatatt ttggggagat attaattcct ctaatatcac agtgggtgta ca #ccctgtga 105780 tattattcat tatatcctgg gaagatatta atccctctaa tatcacagtg gg #tgtacacc 105840 ctgtaatatt attcattata tcctgggaag atattatttc ctctaatatc ac #agtgggtg 105900 tacaccctgt gatattattt gttgtatcct ggggagatat tattatgtct ca #tatcacaa 105960 tgggtgaaca ccctgtgata gtattcgtta tatttgggga agatgttatt ac #ccctaata 106020 tcacagtggt gtacactctg tgatattatt cattatgtag tggggagata gt #attaccca 106080 taatatcaca gtggatgtac accctgtcat attatttgtt atatccttga ga #aatattat 106140 tattcctctt atcacagtgg gtgtacaccc tgtgatatta ttcgttacat cc #tagggaga 106200 tattgttacc cataatatca cagtggatgt acaccctgtc atattattcg tt #atatcctt 106260 gagagatgtt actaccccta atatcacagt gggtgtatac cctgtgatat ta #ttcatcaa 106320 attttctgga gatattatta cccataatat cacagtgtgt gtacccactg tg #acagtatt 106380 gattatatct tggggcgata ttactcttaa tttcacagtg gctgtatccc tg #tgtttaca 106440 ccctgtgatg ttattcataa tattttaggg agatattact cctaatatca ca #gtcagtgt 106500 ataccatgtt tgtacaccct atgatattat ttgtaatatt ttagggagat at #tactccta 106560 atatcgttgt gggtgtacag catgtttgta aacactgtga tattattcat aa #tatctgag 106620 agagatatta ctgccaatat cacagtgggt gtacaccctg tacaccgtgt ga #tacgattc 106680 ataatatccg agggagatat tactcccagt atcacagtgg gtttacaccc tg #tggtatta 106740 ttcataatat tcgagggaga tattactctc aatatcacag tggatgtaca cc #ctgtgata 106800 ttatttgcaa tatccgaggg aaacattact gctaatatca cagtgggagt ac #accctgtg 106860 atattatttg ttttatcctg gagacatatt attcctatta tcacagtggt tg #tacaccct 106920 gtgatattct tcgctatatt catggaagat gttattaccc ctaatatcac ag #ttggtgta 106980 caccctgtga tattattcgt tatatcctgg ggagatattg ttacccctag ta #tcacagtg 107040 ggtgtacgcc ctgtcatatt atccattaca tcatgggaag atattattac at #ctaatatc 107100 actgtgggtg tacaccctgt gatattattt attatatcct ggtgagatgt ta #ttactgct 107160 aatatcacag ggtgtgtcaa attttctgga gatattatta cccttaatat ca #cagtgggt 107220 gtgcaccctg tgtgtacact ctgtaatatt atttgtaata ttttagggag at #attactac 107280 taatatcaca gtgggtgtac accctgagga gatattactt cctctgatat ca #cagtgggt 107340 gtacaccctc tcatattatt cgttatgtgc taagtagata ttattacccc ta #atatcaca 107400 gtgggtgtac accctgtgat gttattcctt atatcccaag aagatattat ta #taactaat 107460 atcacagtgg gtgtacaccc tatgatatta tctgttatat actgggggga ta #ttatttgt 107520 aatattttag ggagatacta ctcctaatat catagtgggt gtactcatat tt #tacagata 107580 tattactttt aatatcacag tgggtgtaca ccctgtgtgt acaccctgta at #attattag 107640 taatatttta gggagatatt actcctaata tcatagtggg tgtacaccat gt #ttgtaaac 107700 cctaggatat tattcataat atccgaggga gatattactc ccaatatcac gg #tgggttta 107760 caccctatga tattatttgt aatatctgag gcaggtatta ctctccatat ca #cagtgagt 107820 <210> SEQ ID NO 2 <211> LENGTH: 4512 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(4512) <223> OTHER INFORMATION: cDNA for human MRP6 pr #otein <400> SEQUENCE: 2 atg gcc gcg cct gct gag ccc tgc gcg ggg ca #g ggg gtc tgg aac cag 48 Met Ala Ala Pro Ala Glu Pro Cys Ala Gly Gl #n Gly Val Trp Asn Gln 1 5 # 10 # 15 aca gag cct gaa cct gcc gcc acc agc ctg ct #g agc ctg tgc ttc ctg 96 Thr Glu Pro Glu Pro Ala Ala Thr Ser Leu Le #u Ser Leu Cys Phe Leu 20 # 25 # 30 aga aca gca ggg gtc tgg gta ccc ccc atg ta #c ctc tgg gtc ctt ggt 144 Arg Thr Ala Gly Val Trp Val Pro Pro Met Ty #r Leu Trp Val Leu Gly 35 # 40 # 45 ccc atc tac ctc ctc ttc atc cac cac cat gg #c cgg ggc tac ctg tgg 192 Pro Ile Tyr Leu Leu Phe Ile His His His Gl #y Arg Gly Tyr Leu Trp 50 # 55 # 60 atg tcc cca ctc ttc aaa gcc aag atg gtg ct #t gga ttc gcc ctc ata 240 Met Ser Pro Leu Phe Lys Ala Lys Met Val Le #u Gly Phe Ala Leu Ile 65 #70 #75 #80 gtc ctg tgt acc tcc agc gtg gct gtc gct ct #t tgg aaa atc caa cag 288 Val Leu Cys Thr Ser Ser Val Ala Val Ala Le #u Trp Lys Ile Gln Gln 85 # 90 # 95 gga acg cct gag gcc cca gaa ttc ctc att ca #t cct act gtg tgg ctc 336 Gly Thr Pro Glu Ala Pro Glu Phe Leu Ile Hi #s Pro Thr Val Trp Leu 100 # 105 # 110 acc acg atg agc ttc gca gtg ttc ctg att ca #c acc gag agg aaa aag 384 Thr Thr Met Ser Phe Ala Val Phe Leu Ile Hi #s Thr Glu Arg Lys Lys 115 # 120 # 125 gga gtc cag tca tct gga gtg ctg ttt ggt ta #c tgg ctt ctc tgc ttt 432 Gly Val Gln Ser Ser Gly Val Leu Phe Gly Ty #r Trp Leu Leu Cys Phe 130 # 135 # 140 gtc ttg cca gct acc aac gct gcc cag cag gc #c tcc gga gcg ggc ttc 480 Val Leu Pro Ala Thr Asn Ala Ala Gln Gln Al #a Ser Gly Ala Gly Phe 145 1 #50 1 #55 1 #60 cag agc gac cct gtc cgc cac ctg tcc acc ta #c cta tgc ctg tct ctg 528 Gln Ser Asp Pro Val Arg His Leu Ser Thr Ty #r Leu Cys Leu Ser Leu 165 # 170 # 175 gtg gtg gca cag ttt gtg ctg tcc tgc ctg gc #g gat caa ccc ccc ttc 576 Val Val Ala Gln Phe Val Leu Ser Cys Leu Al #a Asp Gln Pro Pro Phe 180 # 185 # 190 ttc cct gaa gac ccc cag cag tct aac ccc tg #t cca gag act ggg gca 624 Phe Pro Glu Asp Pro Gln Gln Ser Asn Pro Cy #s Pro Glu Thr Gly Ala 195 # 200 # 205 gcc ttc ccc tcc aaa gcc acg ttc tgg tgg gt #t tct ggc ctg gtc tgg 672 Ala Phe Pro Ser Lys Ala Thr Phe Trp Trp Va #l Ser Gly Leu Val Trp 210 # 215 # 220 agg gga tac agg agg cca ctg aga cca aaa ga #c ctc tgg tcg ctt ggg 720 Arg Gly Tyr Arg Arg Pro Leu Arg Pro Lys As #p Leu Trp Ser Leu Gly 225 2 #30 2 #35 2 #40 aga gaa aac tcc tca gaa gaa ctt gtt tcc cg #g ctt gaa aag gag tgg 768 Arg Glu Asn Ser Ser Glu Glu Leu Val Ser Ar #g Leu Glu Lys Glu Trp 245 # 250 # 255 atg agg aac cgc agt gca gcc cgg agg cac aa #c aag gca ata gca ttt 816 Met Arg Asn Arg Ser Ala Ala Arg Arg His As #n Lys Ala Ile Ala Phe 260 # 265 # 270 aaa agg aaa ggc ggc agt ggc atg aag gct cc #a gag acc gag ccc ttc 864 Lys Arg Lys Gly Gly Ser Gly Met Lys Ala Pr #o Glu Thr Glu Pro Phe 275 # 280 # 285 cta cgg caa gaa ggg agc cag tgg cgc cca ct #g ctg aag gcc atc tgg 912 Leu Arg Gln Glu Gly Ser Gln Trp Arg Pro Le #u Leu Lys Ala Ile Trp 290 # 295 # 300 cag gtg ttc cat tct acc ttc ctc ctg ggg ac #c ctc agc ctc atc atc 960 Gln Val Phe His Ser Thr Phe Leu Leu Gly Th #r Leu Ser Leu Ile Ile 305 3 #10 3 #15 3 #20 agt gat gtc ttc agg ttc act gtc ccc aag ct #g ctc agc ctt ttc ctg 1008 Ser Asp Val Phe Arg Phe Thr Val Pro Lys Le #u Leu Ser Leu Phe Leu 325 # 330 # 335 gag ttt att ggt gat ccc aag cct cca gcc tg #g aag ggc tac ctc ctc 1056 Glu Phe Ile Gly Asp Pro Lys Pro Pro Ala Tr #p Lys Gly Tyr Leu Leu 340 # 345 # 350 gcc gtg ctg atg ttc ctc tca gcc tgc ctg ca #a acg ctg ttt gag cag 1104 Ala Val Leu Met Phe Leu Ser Ala Cys Leu Gl #n Thr Leu Phe Glu Gln 355 # 360 # 365 cag aac atg tac agg ctc aag gtg ctg cag at #g agg ttg cgg tcg gcc 1152 Gln Asn Met Tyr Arg Leu Lys Val Leu Gln Me #t Arg Leu Arg Ser Ala 370 # 375 # 380 atc act ggc ctg gtg tac aga aag gtc ctg gc #t ctg tcc agc ggc tcc 1200 Ile Thr Gly Leu Val Tyr Arg Lys Val Leu Al #a Leu Ser Ser Gly Ser 385 3 #90 3 #95 4 #00 aga aag gcc agt gcg gtg ggt gat gtg gtc aa #t ctg gtg tcc gtg gac 1248 Arg Lys Ala Ser Ala Val Gly Asp Val Val As #n Leu Val Ser Val Asp 405 # 410 # 415 gtg cag cgg ctg acc gag agc gtc ctc tac ct #c aac ggg ctg tgg ctg 1296 Val Gln Arg Leu Thr Glu Ser Val Leu Tyr Le #u Asn Gly Leu Trp Leu 420 # 425 # 430 cct ctc gtc tgg atc gtg gtc tgc ttc gtc ta #t ctc tgg cag ctc ctg 1344 Pro Leu Val Trp Ile Val Val Cys Phe Val Ty #r Leu Trp Gln Leu Leu 435 # 440 # 445 ggg ccc tcc gcc ctc act gcc atc gct gtc tt #c ctg agc ctc ctc cct 1392 Gly Pro Ser Ala Leu Thr Ala Ile Ala Val Ph #e Leu Ser Leu Leu Pro 450 # 455 # 460 ctg aat ttc ttc atc tcc aag aaa agg aac ca #c cat cag gag gag caa 1440 Leu Asn Phe Phe Ile Ser Lys Lys Arg Asn Hi #s His Gln Glu Glu Gln 465 4 #70 4 #75 4 #80 atg agg cag aag gac tca cgg gca cgg ctc ac #c agc tct atc ctc agg 1488 Met Arg Gln Lys Asp Ser Arg Ala Arg Leu Th #r Ser Ser Ile Leu Arg 485 # 490 # 495 aac tcg aag acc atc aag ttc cat ggc tgg ga #g gga gcc ttt ctg gac 1536 Asn Ser Lys Thr Ile Lys Phe His Gly Trp Gl #u Gly Ala Phe Leu Asp 500 # 505 # 510 aga gtc ctg ggc atc cga ggc cag gag ctg gg #c gcc ttg cgg acc tcc 1584 Arg Val Leu Gly Ile Arg Gly Gln Glu Leu Gl #y Ala Leu Arg Thr Ser 515 # 520 # 525 ggc ctc ctc ttc tct gtg tcg ctg gtg tcc tt #c caa gtg tct aca ttt 1632 Gly Leu Leu Phe Ser Val Ser Leu Val Ser Ph #e Gln Val Ser Thr Phe 530 # 535 # 540 ctg gtc gca ctg gtg gtg ttt gct gtc cac ac #t ctg gtg gcc gag aat 1680 Leu Val Ala Leu Val Val Phe Ala Val His Th #r Leu Val Ala Glu Asn 545 5 #50 5 #55 5 #60 gct atg aat gca gag aaa gcc ttt gtg act ct #c aca gtt ctc aac atc 1728 Ala Met Asn Ala Glu Lys Ala Phe Val Thr Le #u Thr Val Leu Asn Ile 565 # 570 # 575 ctc aac aag gcc cag gct ttc ctg ccc ttc tc #c atc cac tcc ctc gtc 1776 Leu Asn Lys Ala Gln Ala Phe Leu Pro Phe Se #r Ile His Ser Leu Val 580 # 585 # 590 cag gcc cgg gtg tcc ttt gac cgt ctg gtc ac #c ttc ctc tgc ctg gaa 1824 Gln Ala Arg Val Ser Phe Asp Arg Leu Val Th #r Phe Leu Cys Leu Glu 595 # 600 # 605 gaa gtt gac cct ggt gtc gta gac tca agt tc #c tct gga agc gct gcc 1872 Glu Val Asp Pro Gly Val Val Asp Ser Ser Se #r Ser Gly Ser Ala Ala 610 # 615 # 620 ggg aag gat tgc atc acc ata cac agt gcc ac #c ttc gcc tgg tcc cag 1920 Gly Lys Asp Cys Ile Thr Ile His Ser Ala Th #r Phe Ala Trp Ser Gln 625 6 #30 6 #35 6 #40 gaa agc cct ccc tgc ctc cac aga ata aac ct #c acg gtg ccc cag ggc 1968 Glu Ser Pro Pro Cys Leu His Arg Ile Asn Le #u Thr Val Pro Gln Gly 645 # 650 # 655 tgt ctg ctg gct gtt gtc ggt cca gtg ggg gc #a ggg aag tcc tcc ctg 2016 Cys Leu Leu Ala Val Val Gly Pro Val Gly Al #a Gly Lys Ser Ser Leu 660 # 665 # 670 ctg tcc gcc ctc ctt ggg gag ctg tca aag gt #g gag ggg ttc gtg agc 2064 Leu Ser Ala Leu Leu Gly Glu Leu Ser Lys Va #l Glu Gly Phe Val Ser 675 # 680 # 685 atc gag ggt gct gtg gcc tac gtg ccc cag ga #g gcc tgg gtg cag aac 2112 Ile Glu Gly Ala Val Ala Tyr Val Pro Gln Gl #u Ala Trp Val Gln Asn 690 # 695 # 700 acc tct gtg gta gag aat gtg tgc ttc ggg ca #g gag ctg gac cca ccc 2160 Thr Ser Val Val Glu Asn Val Cys Phe Gly Gl #n Glu Leu Asp Pro Pro 705 7 #10 7 #15 7 #20 tgg ctg gag aga gta cta gaa gcc tgt gcc ct #g cag cca gat gtg gac 2208 Trp Leu Glu Arg Val Leu Glu Ala Cys Ala Le #u Gln Pro Asp Val Asp 725 # 730 # 735 agc ttc cct gag gga atc cac act tca att gg #g gag cag ggc atg aat 2256 Ser Phe Pro Glu Gly Ile His Thr Ser Ile Gl #y Glu Gln Gly Met Asn 740 # 745 # 750 ctc tcc gga ggc cag aag cag cgg ctg agc ct #g gcc cgg gct gta tac 2304 Leu Ser Gly Gly Gln Lys Gln Arg Leu Ser Le #u Ala Arg Ala Val Tyr 755 # 760 # 765 aga aag gca gct gtg tac ctg ctg gat gac cc #c ctg gcg gcc ctg gat 2352 Arg Lys Ala Ala Val Tyr Leu Leu Asp Asp Pr #o Leu Ala Ala Leu Asp 770 # 775 # 780 gcc cac gtt ggc cag cat gtc ttc aac cag gt #c att ggg cct ggt ggg 2400 Ala His Val Gly Gln His Val Phe Asn Gln Va #l Ile Gly Pro Gly Gly 785 7 #90 7 #95 8 #00 cta ctc cag gga aca aca cgg att ctc gtg ac #g cac gca ctc cac atc 2448 Leu Leu Gln Gly Thr Thr Arg Ile Leu Val Th #r His Ala Leu His Ile 805 # 810 # 815 ctg ccc cag gct gat tgg atc ata gtg ctg gc #a aat ggg gcc atc gca 2496 Leu Pro Gln Ala Asp Trp Ile Ile Val Leu Al #a Asn Gly Ala Ile Ala 820 # 825 # 830 gag atg ggt tcc tac cag gag ctt ctg cag ag #g aag ggg gcc ctc gtg 2544 Glu Met Gly Ser Tyr Gln Glu Leu Leu Gln Ar #g Lys Gly Ala Leu Val 835 # 840 # 845 tgt ctt ctg gat caa gcc aga cag cca gga ga #t aga gga gaa gga gaa 2592 Cys Leu Leu Asp Gln Ala Arg Gln Pro Gly As #p Arg Gly Glu Gly Glu 850 # 855 # 860 aca gaa cct ggg acc agc acc aag gac ccc ag #a ggc acc tct gca ggc 2640 Thr Glu Pro Gly Thr Ser Thr Lys Asp Pro Ar #g Gly Thr Ser Ala Gly 865 8 #70 8 #75 8 #80 agg agg ccc gag ctt aga cgc gag agg tcc at #c aag tca gtc cct gag 2688 Arg Arg Pro Glu Leu Arg Arg Glu Arg Ser Il #e Lys Ser Val Pro Glu 885 # 890 # 895 aag gac cgt acc act tca gaa gcc cag aca ga #g gtt cct ctg gat gac 2736 Lys Asp Arg Thr Thr Ser Glu Ala Gln Thr Gl #u Val Pro Leu Asp Asp 900 # 905 # 910 cct gac agg gca gga tgg cca gca gga aag ga #c agc atc caa tac ggc 2784 Pro Asp Arg Ala Gly Trp Pro Ala Gly Lys As #p Ser Ile Gln Tyr Gly 915 # 920 # 925 agg gtg aag gcc aca gtg cac ctg gcc tac ct #g cgt gcc gtg ggc acc 2832 Arg Val Lys Ala Thr Val His Leu Ala Tyr Le #u Arg Ala Val Gly Thr 930 # 935 # 940 ccc ctc tgc ctc tac gca ctc ttc ctc ttc ct #c tgc cag caa gtg gcc 2880 Pro Leu Cys Leu Tyr Ala Leu Phe Leu Phe Le #u Cys Gln Gln Val Ala 945 9 #50 9 #55 9 #60 tcc ttc tgc cgg ggc tac tgg ctg agc ctg tg #g gcg gac gac cct gca 2928 Ser Phe Cys Arg Gly Tyr Trp Leu Ser Leu Tr #p Ala Asp Asp Pro Ala 965 # 970 # 975 gta ggt ggg cag cag acg cag gca gcc ctg cg #t ggc ggg atc ttc ggg 2976 Val Gly Gly Gln Gln Thr Gln Ala Ala Leu Ar #g Gly Gly Ile Phe Gly 980 # 985 # 990 ctc ctc ggc tgt ctc caa gcc att ggg ctg #ttt gcc tcc atg gct gcg 3024 Leu Leu Gly Cys Leu Gln Ala Ile Gly Leu #Phe Ala Ser Met Ala Ala 995 # 1000 # 1005 gtg ctc cta ggt ggg gcc cgg gca tcc a #gg ttg ctc ttc cag agg 3069 Val Leu Leu Gly Gly Ala Arg Ala Ser A #rg Leu Leu Phe Gln Arg 1010 # 1015 # 1020 ctc ctg tgg gat gtg gtg cga tct ccc a #tc agc ttc ttt gag cgg 3114 Leu Leu Trp Asp Val Val Arg Ser Pro I #le Ser Phe Phe Glu Arg 1025 # 1030 # 1035 aca ccc att ggt cac ctg cta aac cgc t #tc tcc aag gag aca gac 3159 Thr Pro Ile Gly His Leu Leu Asn Arg P #he Ser Lys Glu Thr Asp 1040 # 1045 # 1050 acg gtt gac gtg gac att cca gac aaa c #tc cgg tcc ctg ctg atg 3204 Thr Val Asp Val Asp Ile Pro Asp Lys L #eu Arg Ser Leu Leu Met 1055 # 1060 # 1065 tac gcc ttt gga ctc ctg gag gtc agc c #tg gtg gtg gca gtg gct 3249 Tyr Ala Phe Gly Leu Leu Glu Val Ser L #eu Val Val Ala Val Ala 1070 # 1075 # 1080 acc cca ctg gcc act gtg gcc atc ctg c #ca ctg ttt ctc ctc tac 3294 Thr Pro Leu Ala Thr Val Ala Ile Leu P #ro Leu Phe Leu Leu Tyr 1085 # 1090 # 1095 gct ggg ttt cag agc ctg tat gtg gtt a #gc tca tgc cag ctg aga 3339 Ala Gly Phe Gln Ser Leu Tyr Val Val S #er Ser Cys Gln Leu Arg 1100 # 1105 # 1110 cgc ttg gag tca gcc agc tac tcg tct g #tc tgc tcc cac atg gct 3384 Arg Leu Glu Ser Ala Ser Tyr Ser Ser V #al Cys Ser His Met Ala 1115 # 1120 # 1125 gag acg ttc cag ggc agc aca gtg gtc c #gg gca ttc cga acc cag 3429 Glu Thr Phe Gln Gly Ser Thr Val Val A #rg Ala Phe Arg Thr Gln 1130 # 1135 # 1140 gcc ccc ttt gtg gct cag aac aat gct c #gc gta gat gaa agc cag 3474 Ala Pro Phe Val Ala Gln Asn Asn Ala A #rg Val Asp Glu Ser Gln 1145 # 1150 # 1155 agg atc agt ttc ccg cga ctg gtg gct g #ac agg tgg ctt gcg gcc 3519 Arg Ile Ser Phe Pro Arg Leu Val Ala A #sp Arg Trp Leu Ala Ala 1160 # 1165 # 1170 aat gtg gag ctc ctg ggg aat ggc ctg g #tg ttt gca gct gcc acg 3564 Asn Val Glu Leu Leu Gly Asn Gly Leu V #al Phe Ala Ala Ala Thr 1175 # 1180 # 1185 tgt gct gtg ctg agc aaa gcc cac ctc a #gt gct ggc ctc gtg ggc 3609 Cys Ala Val Leu Ser Lys Ala His Leu S #er Ala Gly Leu Val Gly 1190 # 1195 # 1200 ttc tct gtc tct gct gcc ctc cag gtg a #cc cag aca ctg cag tgg 3654 Phe Ser Val Ser Ala Ala Leu Gln Val T #hr Gln Thr Leu Gln Trp 1205 # 1210 # 1215 gtt gtt cgc aac tgg aca gac cta gag a #ac agc atc gtg tca gtg 3699 Val Val Arg Asn Trp Thr Asp Leu Glu A #sn Ser Ile Val Ser Val 1220 # 1225 # 1230 gag cgg atg cag gac tat gcc tgg acg c #cc aag gag gct ccc tgg 3744 Glu Arg Met Gln Asp Tyr Ala Trp Thr P #ro Lys Glu Ala Pro Trp 1235 # 1240 # 1245 agg ctg ccc aca tgt gca gct cag ccc c #cc tgg cct cag ggc ggg 3789 Arg Leu Pro Thr Cys Ala Ala Gln Pro P #ro Trp Pro Gln Gly Gly 1250 # 1255 # 1260 cag atc gag ttc cgg gac ttt ggg cta a #ga tac cga cct gag ctc 3834 Gln Ile Glu Phe Arg Asp Phe Gly Leu A #rg Tyr Arg Pro Glu Leu 1265 # 1270 # 1275 ccg ctg gct gtg cag ggc gtg tcc ttc a #ag atc cac gca gga gag 3879 Pro Leu Ala Val Gln Gly Val Ser Phe L #ys Ile His Ala Gly Glu 1280 # 1285 # 1290 aag gtg ggc atc gtt ggc agg acc ggg g #ca ggg aag tcc tcc ctg 3924 Lys Val Gly Ile Val Gly Arg Thr Gly A #la Gly Lys Ser Ser Leu 1295 # 1300 # 1305 gcc agt ggg ctg ctg cgg ctc cag gag g #ca gct gag ggt ggg atc 3969 Ala Ser Gly Leu Leu Arg Leu Gln Glu A #la Ala Glu Gly Gly Ile 1310 # 1315 # 1320 tgg atc gac ggg gtc ccc att gcc cac g #tg ggg ctg cac aca ctg 4014 Trp Ile Asp Gly Val Pro Ile Ala His V #al Gly Leu His Thr Leu 1325 # 1330 # 1335 cgc tcc agg atc agc atc atc ccc cag g #ac ccc atc ctg ttc cct 4059 Arg Ser Arg Ile Ser Ile Ile Pro Gln A #sp Pro Ile Leu Phe Pro 1340 # 1345 # 1350 ggc tct ctg cgg atg aac ctc gac ctg c #tg cag gag cac tcg gac 4104 Gly Ser Leu Arg Met Asn Leu Asp Leu L #eu Gln Glu His Ser Asp 1355 # 1360 # 1365 gag gct atc tgg gca gcc ctg gag acg g #tg cag ctc aaa gcc ttg 4149 Glu Ala Ile Trp Ala Ala Leu Glu Thr V #al Gln Leu Lys Ala Leu 1370 # 1375 # 1380 gtg gcc agc ctg ccc ggc cag ctg cag t #ac aag tgt gct gac cga 4194 Val Ala Ser Leu Pro Gly Gln Leu Gln T #yr Lys Cys Ala Asp Arg 1385 # 1390 # 1395 ggc gag gac ctg agc gtg ggc cag aaa c #ag ctc ctg tgt ctg gca 4239 Gly Glu Asp Leu Ser Val Gly Gln Lys G #ln Leu Leu Cys Leu Ala 1400 # 1405 # 1410 cgt gcc ctt ctc cgg aag acc cag atc c #tc atc ctg gac gag gct 4284 Arg Ala Leu Leu Arg Lys Thr Gln Ile L #eu Ile Leu Asp Glu Ala 1415 # 1420 # 1425 act gct gcc gtg gac cct ggc acg gag c #tg cag atg cag gcc atg 4329 Thr Ala Ala Val Asp Pro Gly Thr Glu L #eu Gln Met Gln Ala Met 1430 # 1435 # 1440 ctc ggg agc tgg ttt gca cag tgc act g #tg ctg ctc att gcc cac 4374 Leu Gly Ser Trp Phe Ala Gln Cys Thr V #al Leu Leu Ile Ala His 1445 # 1450 # 1455 cgc ctg cgc tcc gtg atg gac tgt gcc c #gg gtt ctg gtc atg gac 4419 Arg Leu Arg Ser Val Met Asp Cys Ala A #rg Val Leu Val Met Asp 1460 # 1465 # 1470 aag ggg cag gtg gca gag agc ggc agc c #cg gcc cag ctg ctg gcc 4464 Lys Gly Gln Val Ala Glu Ser Gly Ser P #ro Ala Gln Leu Leu Ala 1475 # 1480 # 1485 cag aag ggc ctg ttt tac aga ctg gcc c #ag gag tca ggc ctg gtc 4509 Gln Lys Gly Leu Phe Tyr Arg Leu Ala G #ln Glu Ser Gly Leu Val 1490 # 1495 # 1500 tga # # # 4512 <210> SEQ ID NO 3 <211> LENGTH: 1503 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Met Ala Ala Pro Ala Glu Pro Cys Ala Gly Gl #n Gly Val Trp Asn Gln 1 5 # 10 # 15 Thr Glu Pro Glu Pro Ala Ala Thr Ser Leu Le #u Ser Leu Cys Phe Leu 20 # 25 # 30 Arg Thr Ala Gly Val Trp Val Pro Pro Met Ty #r Leu Trp Val Leu Gly 35 # 40 # 45 Pro Ile Tyr Leu Leu Phe Ile His His His Gl #y Arg Gly Tyr Leu Trp 50 # 55 # 60 Met Ser Pro Leu Phe Lys Ala Lys Met Val Le #u Gly Phe Ala Leu Ile 65 #70 #75 #80 Val Leu Cys Thr Ser Ser Val Ala Val Ala Le #u Trp Lys Ile Gln Gln 85 # 90 # 95 Gly Thr Pro Glu Ala Pro Glu Phe Leu Ile Hi #s Pro Thr Val Trp Leu 100 # 105 # 110 Thr Thr Met Ser Phe Ala Val Phe Leu Ile Hi #s Thr Glu Arg Lys Lys 115 # 120 # 125 Gly Val Gln Ser Ser Gly Val Leu Phe Gly Ty #r Trp Leu Leu Cys Phe 130 # 135 # 140 Val Leu Pro Ala Thr Asn Ala Ala Gln Gln Al #a Ser Gly Ala Gly Phe 145 1 #50 1 #55 1 #60 Gln Ser Asp Pro Val Arg His Leu Ser Thr Ty #r Leu Cys Leu Ser Leu 165 # 170 # 175 Val Val Ala Gln Phe Val Leu Ser Cys Leu Al #a Asp Gln Pro Pro Phe 180 # 185 # 190 Phe Pro Glu Asp Pro Gln Gln Ser Asn Pro Cy #s Pro Glu Thr Gly Ala 195 # 200 # 205 Ala Phe Pro Ser Lys Ala Thr Phe Trp Trp Va #l Ser Gly Leu Val Trp 210 # 215 # 220 Arg Gly Tyr Arg Arg Pro Leu Arg Pro Lys As #p Leu Trp Ser Leu Gly 225 2 #30 2 #35 2 #40 Arg Glu Asn Ser Ser Glu Glu Leu Val Ser Ar #g Leu Glu Lys Glu Trp 245 # 250 # 255 Met Arg Asn Arg Ser Ala Ala Arg Arg His As #n Lys Ala Ile Ala Phe 260 # 265 # 270 Lys Arg Lys Gly Gly Ser Gly Met Lys Ala Pr #o Glu Thr Glu Pro Phe 275 # 280 # 285 Leu Arg Gln Glu Gly Ser Gln Trp Arg Pro Le #u Leu Lys Ala Ile Trp 290 # 295 # 300 Gln Val Phe His Ser Thr Phe Leu Leu Gly Th #r Leu Ser Leu Ile Ile 305 3 #10 3 #15 3 #20 Ser Asp Val Phe Arg Phe Thr Val Pro Lys Le #u Leu Ser Leu Phe Leu 325 # 330 # 335 Glu Phe Ile Gly Asp Pro Lys Pro Pro Ala Tr #p Lys Gly Tyr Leu Leu 340 # 345 # 350 Ala Val Leu Met Phe Leu Ser Ala Cys Leu Gl #n Thr Leu Phe Glu Gln 355 # 360 # 365 Gln Asn Met Tyr Arg Leu Lys Val Leu Gln Me #t Arg Leu Arg Ser Ala 370 # 375 # 380 Ile Thr Gly Leu Val Tyr Arg Lys Val Leu Al #a Leu Ser Ser Gly Ser 385 3 #90 3 #95 4 #00 Arg Lys Ala Ser Ala Val Gly Asp Val Val As #n Leu Val Ser Val Asp 405 # 410 # 415 Val Gln Arg Leu Thr Glu Ser Val Leu Tyr Le #u Asn Gly Leu Trp Leu 420 # 425 # 430 Pro Leu Val Trp Ile Val Val Cys Phe Val Ty #r Leu Trp Gln Leu Leu 435 # 440 # 445 Gly Pro Ser Ala Leu Thr Ala Ile Ala Val Ph #e Leu Ser Leu Leu Pro 450 # 455 # 460 Leu Asn Phe Phe Ile Ser Lys Lys Arg Asn Hi #s His Gln Glu Glu Gln 465 4 #70 4 #75 4 #80 Met Arg Gln Lys Asp Ser Arg Ala Arg Leu Th #r Ser Ser Ile Leu Arg 485 # 490 # 495 Asn Ser Lys Thr Ile Lys Phe His Gly Trp Gl #u Gly Ala Phe Leu Asp 500 # 505 # 510 Arg Val Leu Gly Ile Arg Gly Gln Glu Leu Gl #y Ala Leu Arg Thr Ser 515 # 520 # 525 Gly Leu Leu Phe Ser Val Ser Leu Val Ser Ph #e Gln Val Ser Thr Phe 530 # 535 # 540 Leu Val Ala Leu Val Val Phe Ala Val His Th #r Leu Val Ala Glu Asn 545 5 #50 5 #55 5 #60 Ala Met Asn Ala Glu Lys Ala Phe Val Thr Le #u Thr Val Leu Asn Ile 565 # 570 # 575 Leu Asn Lys Ala Gln Ala Phe Leu Pro Phe Se #r Ile His Ser Leu Val 580 # 585 # 590 Gln Ala Arg Val Ser Phe Asp Arg Leu Val Th #r Phe Leu Cys Leu Glu 595 # 600 # 605 Glu Val Asp Pro Gly Val Val Asp Ser Ser Se #r Ser Gly Ser Ala Ala 610 # 615 # 620 Gly Lys Asp Cys Ile Thr Ile His Ser Ala Th #r Phe Ala Trp Ser Gln 625 6 #30 6 #35 6 #40 Glu Ser Pro Pro Cys Leu His Arg Ile Asn Le #u Thr Val Pro Gln Gly 645 # 650 # 655 Cys Leu Leu Ala Val Val Gly Pro Val Gly Al #a Gly Lys Ser Ser Leu 660 # 665 # 670 Leu Ser Ala Leu Leu Gly Glu Leu Ser Lys Va #l Glu Gly Phe Val Ser 675 # 680 # 685 Ile Glu Gly Ala Val Ala Tyr Val Pro Gln Gl #u Ala Trp Val Gln Asn 690 # 695 # 700 Thr Ser Val Val Glu Asn Val Cys Phe Gly Gl #n Glu Leu Asp Pro Pro 705 7 #10 7 #15 7 #20 Trp Leu Glu Arg Val Leu Glu Ala Cys Ala Le #u Gln Pro Asp Val Asp 725 # 730 # 735 Ser Phe Pro Glu Gly Ile His Thr Ser Ile Gl #y Glu Gln Gly Met Asn 740 # 745 # 750 Leu Ser Gly Gly Gln Lys Gln Arg Leu Ser Le #u Ala Arg Ala Val Tyr 755 # 760 # 765 Arg Lys Ala Ala Val Tyr Leu Leu Asp Asp Pr #o Leu Ala Ala Leu Asp 770 # 775 # 780 Ala His Val Gly Gln His Val Phe Asn Gln Va #l Ile Gly Pro Gly Gly 785 7 #90 7 #95 8 #00 Leu Leu Gln Gly Thr Thr Arg Ile Leu Val Th #r His Ala Leu His Ile 805 # 810 # 815 Leu Pro Gln Ala Asp Trp Ile Ile Val Leu Al #a Asn Gly Ala Ile Ala 820 # 825 # 830 Glu Met Gly Ser Tyr Gln Glu Leu Leu Gln Ar #g Lys Gly Ala Leu Val 835 # 840 # 845 Cys Leu Leu Asp Gln Ala Arg Gln Pro Gly As #p Arg Gly Glu Gly Glu 850 # 855 # 860 Thr Glu Pro Gly Thr Ser Thr Lys Asp Pro Ar #g Gly Thr Ser Ala Gly 865 8 #70 8 #75 8 #80 Arg Arg Pro Glu Leu Arg Arg Glu Arg Ser Il #e Lys Ser Val Pro Glu 885 # 890 # 895 Lys Asp Arg Thr Thr Ser Glu Ala Gln Thr Gl #u Val Pro Leu Asp Asp 900 # 905 # 910 Pro Asp Arg Ala Gly Trp Pro Ala Gly Lys As #p Ser Ile Gln Tyr Gly 915 # 920 # 925 Arg Val Lys Ala Thr Val His Leu Ala Tyr Le #u Arg Ala Val Gly Thr 930 # 935 # 940 Pro Leu Cys Leu Tyr Ala Leu Phe Leu Phe Le #u Cys Gln Gln Val Ala 945 9 #50 9 #55 9 #60 Ser Phe Cys Arg Gly Tyr Trp Leu Ser Leu Tr #p Ala Asp Asp Pro Ala 965 # 970 # 975 Val Gly Gly Gln Gln Thr Gln Ala Ala Leu Ar #g Gly Gly Ile Phe Gly 980 # 985 # 990 Leu Leu Gly Cys Leu Gln Ala Ile Gly Leu #Phe Ala Ser Met Ala Ala 995 # 1000 # 1005 Val Leu Leu Gly Gly Ala Arg Ala Ser A #rg Leu Leu Phe Gln Arg 1010 # 1015 # 1020 Leu Leu Trp Asp Val Val Arg Ser Pro I #le Ser Phe Phe Glu Arg 1025 # 1030 # 1035 Thr Pro Ile Gly His Leu Leu Asn Arg P #he Ser Lys Glu Thr Asp 1040 # 1045 # 1050 Thr Val Asp Val Asp Ile Pro Asp Lys L #eu Arg Ser Leu Leu Met 1055 # 1060 # 1065 Tyr Ala Phe Gly Leu Leu Glu Val Ser L #eu Val Val Ala Val Ala 1070 # 1075 # 1080 Thr Pro Leu Ala Thr Val Ala Ile Leu P #ro Leu Phe Leu Leu Tyr 1085 # 1090 # 1095 Ala Gly Phe Gln Ser Leu Tyr Val Val S #er Ser Cys Gln Leu Arg 1100 # 1105 # 1110 Arg Leu Glu Ser Ala Ser Tyr Ser Ser V #al Cys Ser His Met Ala 1115 # 1120 # 1125 Glu Thr Phe Gln Gly Ser Thr Val Val A #rg Ala Phe Arg Thr Gln 1130 # 1135 # 1140 Ala Pro Phe Val Ala Gln Asn Asn Ala A #rg Val Asp Glu Ser Gln 1145 # 1150 # 1155 Arg Ile Ser Phe Pro Arg Leu Val Ala A #sp Arg Trp Leu Ala Ala 1160 # 1165 # 1170 Asn Val Glu Leu Leu Gly Asn Gly Leu V #al Phe Ala Ala Ala Thr 1175 # 1180 # 1185 Cys Ala Val Leu Ser Lys Ala His Leu S #er Ala Gly Leu Val Gly 1190 # 1195 # 1200 Phe Ser Val Ser Ala Ala Leu Gln Val T #hr Gln Thr Leu Gln Trp 1205 # 1210 # 1215 Val Val Arg Asn Trp Thr Asp Leu Glu A #sn Ser Ile Val Ser Val 1220 # 1225 # 1230 Glu Arg Met Gln Asp Tyr Ala Trp Thr P #ro Lys Glu Ala Pro Trp 1235 # 1240 # 1245 Arg Leu Pro Thr Cys Ala Ala Gln Pro P #ro Trp Pro Gln Gly Gly 1250 # 1255 # 1260 Gln Ile Glu Phe Arg Asp Phe Gly Leu A #rg Tyr Arg Pro Glu Leu 1265 # 1270 # 1275 Pro Leu Ala Val Gln Gly Val Ser Phe L #ys Ile His Ala Gly Glu 1280 # 1285 # 1290 Lys Val Gly Ile Val Gly Arg Thr Gly A #la Gly Lys Ser Ser Leu 1295 # 1300 # 1305 Ala Ser Gly Leu Leu Arg Leu Gln Glu A #la Ala Glu Gly Gly Ile 1310 # 1315 # 1320 Trp Ile Asp Gly Val Pro Ile Ala His V #al Gly Leu His Thr Leu 1325 # 1330 # 1335 Arg Ser Arg Ile Ser Ile Ile Pro Gln A #sp Pro Ile Leu Phe Pro 1340 # 1345 # 1350 Gly Ser Leu Arg Met Asn Leu Asp Leu L #eu Gln Glu His Ser Asp 1355 # 1360 # 1365 Glu Ala Ile Trp Ala Ala Leu Glu Thr V #al Gln Leu Lys Ala Leu 1370 # 1375 # 1380 Val Ala Ser Leu Pro Gly Gln Leu Gln T #yr Lys Cys Ala Asp Arg 1385 # 1390 # 1395 Gly Glu Asp Leu Ser Val Gly Gln Lys G #ln Leu Leu Cys Leu Ala 1400 # 1405 # 1410 Arg Ala Leu Leu Arg Lys Thr Gln Ile L #eu Ile Leu Asp Glu Ala 1415 # 1420 # 1425 Thr Ala Ala Val Asp Pro Gly Thr Glu L #eu Gln Met Gln Ala Met 1430 # 1435 # 1440 Leu Gly Ser Trp Phe Ala Gln Cys Thr V #al Leu Leu Ile Ala His 1445 # 1450 # 1455 Arg Leu Arg Ser Val Met Asp Cys Ala A #rg Val Leu Val Met Asp 1460 # 1465 # 1470 Lys Gly Gln Val Ala Glu Ser Gly Ser P #ro Ala Gln Leu Leu Ala 1475 # 1480 # 1485 Gln Lys Gly Leu Phe Tyr Arg Leu Ala G #ln Glu Ser Gly Leu Val 1490 # 1495 # 1500 <210> SEQ ID NO 4 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer for ABCC6 <400> SEQUENCE: 4 agccacgttc tggtgggttt # # # 20 <210> SEQ ID NO 5 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer for ABCC6 <400> SEQUENCE: 5 ggaggcttgg gatcaccaat # # # 20 <210> SEQ ID NO 6 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer for MRP-1 <400> SEQUENCE: 6 caactgcatc gttctgtttg # # # 20 <210> SEQ ID NO 7 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: PCR primer for MRP-1 <400> SEQUENCE: 7 atactccttg agcctctcca # # # 20 <210> SEQ ID NO 8 <211> LENGTH: 4980 <212> TYPE: DNA <213> ORGANISM: Mus musculus <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (12)..(4508) <223> OTHER INFORMATION: cDNA for mouse MRP6 <400> SEQUENCE: 8 ccgcgtcgac g atg aac agc ggg cgc tcc atg gcc #acg cct gga gag cag 50 Met Asn Ser #Gly Arg Ser Met Ala Thr Pro Gly Glu Gln 1 # 5 # 10 tgc gcc ggc ctg agg gtc tgg aac cag aca ga #g cag gag cct gcg gcc 98 Cys Ala Gly Leu Arg Val Trp Asn Gln Thr Gl #u Gln Glu Pro Ala Ala 15 # 20 # 25 tat cac ttg ctc agc ctg tgc ttc gtg aga gc #c gcc agc agc tgg gtg 146 Tyr His Leu Leu Ser Leu Cys Phe Val Arg Al #a Ala Ser Ser Trp Val 30 #35 #40 #45 ccc ccc atg tac ctc tgg gtc ctc ggc ccc at #c tac ctt ctc tac atc 194 Pro Pro Met Tyr Leu Trp Val Leu Gly Pro Il #e Tyr Leu Leu Tyr Ile 50 # 55 # 60 cat cgc cat ggc cgg tgc tac ctc cgg atg tc #c cac ctc ttc aaa acc 242 His Arg His Gly Arg Cys Tyr Leu Arg Met Se #r His Leu Phe Lys Thr 65 # 70 # 75 aaa atg gtg ctg ggc ttg gcc ctc atc ctt ct #g tat acc ttc aac gtg 290 Lys Met Val Leu Gly Leu Ala Leu Ile Leu Le #u Tyr Thr Phe Asn Val 80 # 85 # 90 gcc gtg cct ctg tgg agg atc cac cag ggc gt #g ccc cag gcc cca gag 338 Ala Val Pro Leu Trp Arg Ile His Gln Gly Va #l Pro Gln Ala Pro Glu 95 # 100 # 105 ctt cta att cac cct act gtg tgg ctc acc ac #c atg agc ttt gcc acc 386 Leu Leu Ile His Pro Thr Val Trp Leu Thr Th #r Met Ser Phe Ala Thr 110 1 #15 1 #20 1 #25 ttt ctg atc cac atg gag aga agg aag gga gt #c cgg tca tcc ggg gtg 434 Phe Leu Ile His Met Glu Arg Arg Lys Gly Va #l Arg Ser Ser Gly Val 130 # 135 # 140 ttg ttc ggg tac tgg ctg ctc tgc tgc atc tt #g cca gga atc aac act 482 Leu Phe Gly Tyr Trp Leu Leu Cys Cys Ile Le #u Pro Gly Ile Asn Thr 145 # 150 # 155 gtg cag cag gcc tct gca ggg aac tta cgt ca #g gag ccc ctc cac cac 530 Val Gln Gln Ala Ser Ala Gly Asn Leu Arg Gl #n Glu Pro Leu His His 160 # 165 # 170 ctg gcc acc tac ctg tgc ttg tcc ctg gtg gt #g gct gag ctg gtg ctg 578 Leu Ala Thr Tyr Leu Cys Leu Ser Leu Val Va #l Ala Glu Leu Val Leu 175 # 180 # 185 tcc tgt ctg gtg gac cag cca ccc ttc ttc tc #g gaa gac tcc cag cca 626 Ser Cys Leu Val Asp Gln Pro Pro Phe Phe Se #r Glu Asp Ser Gln Pro 190 1 #95 2 #00 2 #05 ttg aat ccg tgt cca gag gct gag gcc tcc tt #t ccc tcc aag gcc atg 674 Leu Asn Pro Cys Pro Glu Ala Glu Ala Ser Ph #e Pro Ser Lys Ala Met 210 # 215 # 220 ttc tgg tgg gcc tct gga ctg cta tgg agg gg #c tac aaa aag ctg ctg 722 Phe Trp Trp Ala Ser Gly Leu Leu Trp Arg Gl #y Tyr Lys Lys Leu Leu 225 # 230 # 235 gga cca aaa gac ctc tgg tca ctt ggg aga ga #a aac tct tca gaa gaa 770 Gly Pro Lys Asp Leu Trp Ser Leu Gly Arg Gl #u Asn Ser Ser Glu Glu 240 # 245 # 250 ctc gtt tcc cag ctg gaa aga gaa tgg agg ag #a agc tgc aat ggg ctg 818 Leu Val Ser Gln Leu Glu Arg Glu Trp Arg Ar #g Ser Cys Asn Gly Leu 255 # 260 # 265 cca ggg cac aaa ggg cac agt agt gtg ggg gc #c cct gag aca gag gcc 866 Pro Gly His Lys Gly His Ser Ser Val Gly Al #a Pro Glu Thr Glu Ala 270 2 #75 2 #80 2 #85 ttc ctg cag cca gag agg agt cag agg ggc cc #a cta ctc agg gct atc 914 Phe Leu Gln Pro Glu Arg Ser Gln Arg Gly Pr #o Leu Leu Arg Ala Ile 290 # 295 # 300 tgg cgc gtg ttc cgg tcc acc ttc ctg ctg gg #g acc ctc agc ctg gtc 962 Trp Arg Val Phe Arg Ser Thr Phe Leu Leu Gl #y Thr Leu Ser Leu Val 305 # 310 # 315 att agc gat gcc ttc agg ttt gct gtt ccc aa #g ctc ctc agt ctg ttt 1010 Ile Ser Asp Ala Phe Arg Phe Ala Val Pro Ly #s Leu Leu Ser Leu Phe 320 # 325 # 330 ctg gag ttc atg ggt gac cgc aac tcc tcg gc #g tgg aca ggc tgg ctc 1058 Leu Glu Phe Met Gly Asp Arg Asn Ser Ser Al #a Trp Thr Gly Trp Leu 335 # 340 # 345 cta gct gtg ctg atg ttc gcg gca gcc tgc ct #a cag acg ttg ttt gaa 1106 Leu Ala Val Leu Met Phe Ala Ala Ala Cys Le #u Gln Thr Leu Phe Glu 350 3 #55 3 #60 3 #65 cag cag cac atg tac aga gcc aag gtc ctg ca #g atg agg ctg cga aca 1154 Gln Gln His Met Tyr Arg Ala Lys Val Leu Gl #n Met Arg Leu Arg Thr 370 # 375 # 380 gcc atc act ggc ctg gtg tac aga aag gtc ct #g gtc ctg tcc agt ggt 1202 Ala Ile Thr Gly Leu Val Tyr Arg Lys Val Le #u Val Leu Ser Ser Gly 385 # 390 # 395 tcc aga aag tcc agc gca gca gga gac gtg gt #c aac ctg gtg tcg gtg 1250 Ser Arg Lys Ser Ser Ala Ala Gly Asp Val Va #l Asn Leu Val Ser Val 400 # 405 # 410 gac atc cag cgg ctg gcc gag agc atc atc ta #c ctc aac ggg ctg tgg 1298 Asp Ile Gln Arg Leu Ala Glu Ser Ile Ile Ty #r Leu Asn Gly Leu Trp 415 # 420 # 425 ctg ctc ttc ctg tgg atc ttt gtg tgc ttt gt #c tac ctg tgg cag ctc 1346 Leu Leu Phe Leu Trp Ile Phe Val Cys Phe Va #l Tyr Leu Trp Gln Leu 430 4 #35 4 #40 4 #45 ctt gga ccc tct gct ctc aca gcc gtt gct gt #c ttc ctg agc ctc ctc 1394 Leu Gly Pro Ser Ala Leu Thr Ala Val Ala Va #l Phe Leu Ser Leu Leu 450 # 455 # 460 cct ctg aac ttc ttc atc acc aag aag agg gg #c ttc cat cag gaa gaa 1442 Pro Leu Asn Phe Phe Ile Thr Lys Lys Arg Gl #y Phe His Gln Glu Glu 465 # 470 # 475 cag atg agg cag aag gcc tcc aga gca cgg ct #c acc agc tcc atg ctc 1490 Gln Met Arg Gln Lys Ala Ser Arg Ala Arg Le #u Thr Ser Ser Met Leu 480 # 485 # 490 aga act gtg aga acc atc aag tcc cac ggc tg #g gag cat gcc ttc ctg 1538 Arg Thr Val Arg Thr Ile Lys Ser His Gly Tr #p Glu His Ala Phe Leu 495 # 500 # 505 gag cga ctc ctt cac atc cgg ggc cag gag ct #c agc gcc ctg aag acc 1586 Glu Arg Leu Leu His Ile Arg Gly Gln Glu Le #u Ser Ala Leu Lys Thr 510 5 #15 5 #20 5 #25 tcc acc ctc ctc ttc tct gtg tct ctc gtg tc #c ttc caa gtg tct aca 1634 Ser Thr Leu Leu Phe Ser Val Ser Leu Val Se #r Phe Gln Val Ser Thr 530 # 535 # 540 ttt ctg gtg gcg ctg gtc gtg ttt gct gtc ca #c acc ctg gtg gca gag 1682 Phe Leu Val Ala Leu Val Val Phe Ala Val Hi #s Thr Leu Val Ala Glu 545 # 550 # 555 gac aat gcc atg gat gca gag aag gcc ttt gt #g acg ctc aca gtg ctc 1730 Asp Asn Ala Met Asp Ala Glu Lys Ala Phe Va #l Thr Leu Thr Val Leu 560 # 565 # 570 agc atc ctt aac aaa gcc cag gcc ttc ctc cc #c ttc tct gtg cac tgc 1778 Ser Ile Leu Asn Lys Ala Gln Ala Phe Leu Pr #o Phe Ser Val His Cys 575 # 580 # 585 atc gtt cag gct cga gtg tcc ttt gac cgg ct #g gct gcc ttc ctg tgc 1826 Ile Val Gln Ala Arg Val Ser Phe Asp Arg Le #u Ala Ala Phe Leu Cys 590 5 #95 6 #00 6 #05 ctg gaa gaa gta gac ccc aat ggc atg atc gc #g agt aac tcc agg cgc 1874 Leu Glu Glu Val Asp Pro Asn Gly Met Ile Al #a Ser Asn Ser Arg Arg 610 # 615 # 620 tcc tcg aag gat cga att tct gta cac aat gg #c acc ttc gct tgg tcc 1922 Ser Ser Lys Asp Arg Ile Ser Val His Asn Gl #y Thr Phe Ala Trp Ser 625 # 630 # 635 cag gag agc cca ccc tgc ctg cac ggg atc aa #c ctc acc gtg ccc cag 1970 Gln Glu Ser Pro Pro Cys Leu His Gly Ile As #n Leu Thr Val Pro Gln 640 # 645 # 650 ggc tgt ctg ctg gct gtt gtg ggt cca gtg gg #g gct ggg aag tcc tcc 2018 Gly Cys Leu Leu Ala Val Val Gly Pro Val Gl #y Ala Gly Lys Ser Ser 655 # 660 # 665 ctg ctg tct gcc ctg ctt ggg gag ctg ttg aa #g gta gaa ggg tct gtg 2066 Leu Leu Ser Ala Leu Leu Gly Glu Leu Leu Ly #s Val Glu Gly Ser Val 670 6 #75 6 #80 6 #85 agc att gag ggt tcc gtg gct tac gtg cct ca #g gag gcc tgg gtc cag 2114 Ser Ile Glu Gly Ser Val Ala Tyr Val Pro Gl #n Glu Ala Trp Val Gln 690 # 695 # 700 aat acc tct gtg gcg gag aat gtg tgc ttc ag #g caa gag ctg gac ctg 2162 Asn Thr Ser Val Ala Glu Asn Val Cys Phe Ar #g Gln Glu Leu Asp Leu 705 # 710 # 715 ccc tgg ttg cag aaa gtt cta gac gcc tgt gc #c ttg ggg tct gat gtg 2210 Pro Trp Leu Gln Lys Val Leu Asp Ala Cys Al #a Leu Gly Ser Asp Val 720 # 725 # 730 gcc agc ttc cct gca gga gtt cac acc cca at #a ggg gag cag ggc atg 2258 Ala Ser Phe Pro Ala Gly Val His Thr Pro Il #e Gly Glu Gln Gly Met 735 # 740 # 745 aat ctt tct ggg ggc cag aag cag cgg ctg ag #c ttg gct cgg gct gtg 2306 Asn Leu Ser Gly Gly Gln Lys Gln Arg Leu Se #r Leu Ala Arg Ala Val 750 7 #55 7 #60 7 #65 tac aaa aag gct gcc atc tac ttg ctg gat ga #c ccc ctg gca gcg ctg 2354 Tyr Lys Lys Ala Ala Ile Tyr Leu Leu Asp As #p Pro Leu Ala Ala Leu 770 # 775 # 780 gat gcc cac gtc agc cag cag gtc ttc aaa ca #g gtc atc ggg ccc agt 2402 Asp Ala His Val Ser Gln Gln Val Phe Lys Gl #n Val Ile Gly Pro Ser 785 # 790 # 795 gga ttg ctc cag ggt acg act cgg atc ctt gt #a aca cac acg ctg cac 2450 Gly Leu Leu Gln Gly Thr Thr Arg Ile Leu Va #l Thr His Thr Leu His 800 # 805 # 810 gtc ctg ccc cag gct gac cgg atc ctg gtg ct #g gcc aat ggg acc atc 2498 Val Leu Pro Gln Ala Asp Arg Ile Leu Val Le #u Ala Asn Gly Thr Ile 815 # 820 # 825 gca gag atg ggc tcc tac cag gac ctt ctg ca #a agg aac gga gcc ctg 2546 Ala Glu Met Gly Ser Tyr Gln Asp Leu Leu Gl #n Arg Asn Gly Ala Leu 830 8 #35 8 #40 8 #45 gtg ggt ctt ctg gat gga gcc aga cag cct gc #a gga aca cac gat gca 2594 Val Gly Leu Leu Asp Gly Ala Arg Gln Pro Al #a Gly Thr His Asp Ala 850 # 855 # 860 gct acc agt gac gac ctc gga ggc ttt cct gg #a ggt ggg agg ccc aca 2642 Ala Thr Ser Asp Asp Leu Gly Gly Phe Pro Gl #y Gly Gly Arg Pro Thr 865 # 870 # 875 tgc aga cca gac agg ccc agg ccc acg gag gc #a gcc cct gtg aag ggc 2690 Cys Arg Pro Asp Arg Pro Arg Pro Thr Glu Al #a Ala Pro Val Lys Gly 880 # 885 # 890 agg agc aca tct gag gta cag atg gag gct tc #t ctg gat gac cct gag 2738 Arg Ser Thr Ser Glu Val Gln Met Glu Ala Se #r Leu Asp Asp Pro Glu 895 # 900 # 905 gcc aca gga ttg aca gca gaa gag gat agt gt #g cga tat ggc cgg gtg 2786 Ala Thr Gly Leu Thr Ala Glu Glu Asp Ser Va #l Arg Tyr Gly Arg Val 910 9 #15 9 #20 9 #25 aag atc acc ata tac ctg agc tac ctg cgg gc #g gtg ggc aca ccc ctc 2834 Lys Ile Thr Ile Tyr Leu Ser Tyr Leu Arg Al #a Val Gly Thr Pro Leu 930 # 935 # 940 tgt acc tac acc ctg ttc ctc ttc ctc tgc ca #g caa gtg gca tcc ttc 2882 Cys Thr Tyr Thr Leu Phe Leu Phe Leu Cys Gl #n Gln Val Ala Ser Phe 945 # 950 # 955 tcc caa ggc tac tgg ctg agc ctt tgg gcc ga #t gac ccg gtt gtg gat 2930 Ser Gln Gly Tyr Trp Leu Ser Leu Trp Ala As #p Asp Pro Val Val Asp 960 # 965 # 970 ggg cgg cag atg cat gca gcc ctg cgt ggc tg #g gtc ttt ggg ctc ctt 2978 Gly Arg Gln Met His Ala Ala Leu Arg Gly Tr #p Val Phe Gly Leu Leu 975 # 980 # 985 ggc tgt ctg caa gcc atc gga ctg ttt gcc tc #c atg gct gcg gtg ttc 3026 Gly Cys Leu Gln Ala Ile Gly Leu Phe Ala Se #r Met Ala Ala Val Phe 990 9 #95 1 #000 #1005 ctg ggt gga gcc cgg gcc tca ggc ctc ctt # ttc cgg agt ctc ctg 3071 Leu Gly Gly Ala Arg Ala Ser Gly Leu Leu # Phe Arg Ser Leu Leu 1010 # 1015 # 1020 tgg gac gtg gct cgc tct ccc atc ggc ttc # ttt gag cgc acg cca 3116 Trp Asp Val Ala Arg Ser Pro Ile Gly Phe # Phe Glu Arg Thr Pro 1025 # 1030 # 1035 gtc ggg aac ctg ctg aac cgc ttt tcc aag # gag aca gac aca gtg 3161 Val Gly Asn Leu Leu Asn Arg Phe Ser Lys # Glu Thr Asp Thr Val 1040 # 1045 # 1050 gat gtg gac atc ccg gac aag ctg agg tcc # ctt ctg acc tat gcc 3206 Asp Val Asp Ile Pro Asp Lys Leu Arg Ser # Leu Leu Thr Tyr Ala 1055 # 1060 # 1065 ttt ggg ctc ctg gag gtc ggc ctg gca gtg # acg atg gcc acg cct 3251 Phe Gly Leu Leu Glu Val Gly Leu Ala Val # Thr Met Ala Thr Pro 1070 # 1075 # 1080 ctg gcc att gtg gcc atc cta cct ctc atg # gtc ctc tat gct ggg 3296 Leu Ala Ile Val Ala Ile Leu Pro Leu Met # Val Leu Tyr Ala Gly 1085 # 1090 # 1095 ttt cag agc ctc tat gtg gcc aca tct tgc # cag ctg aga cgt cta 3341 Phe Gln Ser Leu Tyr Val Ala Thr Ser Cys # Gln Leu Arg Arg Leu 1100 # 1105 # 1110 gag tca gcc cgc tac tca tct gtg tgt tcc # cat atg gct gag acc 3386 Glu Ser Ala Arg Tyr Ser Ser Val Cys Ser # His Met Ala Glu Thr 1115 # 1120 # 1125 ttc cag gga agt ctg gtg gtc agg gcc ttc # cgg gcc cag gcg tcc 3431 Phe Gln Gly Ser Leu Val Val Arg Ala Phe # Arg Ala Gln Ala Ser 1130 # 1135 # 1140 ttc acg gct cag cac gat gct ctc atg gat # gag aac cag agg gtc 3476 Phe Thr Ala Gln His Asp Ala Leu Met Asp # Glu Asn Gln Arg Val 1145 # 1150 # 1155 agt ttc ccg aaa ctg gtg gct gac agg tgg # ctg gct act aac ctg 3521 Ser Phe Pro Lys Leu Val Ala Asp Arg Trp # Leu Ala Thr Asn Leu 1160 # 1165 # 1170 gag ctt cta ggg aat ggc ttg gta ttc gtg # gct gct aca tgt gct 3566 Glu Leu Leu Gly Asn Gly Leu Val Phe Val # Ala Ala Thr Cys Ala 1175 # 1180 # 1185 gtg ctg agc aag gct cac cta agt gct ggc # ctc gtg ggc ttc tcg 3611 Val Leu Ser Lys Ala His Leu Ser Ala Gly # Leu Val Gly Phe Ser 1190 # 1195 # 1200 gtc tcc gct gcc ctc cag gtg aca cag act # ctg cag tgg gtg gtc 3656 Val Ser Ala Ala Leu Gln Val Thr Gln Thr # Leu Gln Trp Val Val 1205 # 1210 # 1215 cgc agc tgg aca gat ctg gag aac agc atg # gta gcc gtg gag cgc 3701 Arg Ser Trp Thr Asp Leu Glu Asn Ser Met # Val Ala Val Glu Arg 1220 # 1225 # 1230 gtg cag gac tac gct cgc atc ccc aaa gag # gct ccc tgg agg ctg 3746 Val Gln Asp Tyr Ala Arg Ile Pro Lys Glu # Ala Pro Trp Arg Leu 1235 # 1240 # 1245 ccc acc tgc gca gcc cag cct ctc tgg cct # tgt ggg gga cag att 3791 Pro Thr Cys Ala Ala Gln Pro Leu Trp Pro # Cys Gly Gly Gln Ile 1250 # 1255 # 1260 gag ttc cgg gac ttt ggg ctc aga cac cga # cca gag ctg ccc ttg 3836 Glu Phe Arg Asp Phe Gly Leu Arg His Arg # Pro Glu Leu Pro Leu 1265 # 1270 # 1275 gct gtg cag gga gtg tcc ctg aag atc cat # gca gga gag aag gtg 3881 Ala Val Gln Gly Val Ser Leu Lys Ile His # Ala Gly Glu Lys Val 1280 # 1285 # 1290 ggc atc gtg ggc aga aca ggg gcc ggg aag # tcc tcc ctg gct tgg 3926 Gly Ile Val Gly Arg Thr Gly Ala Gly Lys # Ser Ser Leu Ala Trp 1295 # 1300 # 1305 ggc ctg ctg cgg ctt cag gag gct gcc gag # ggt aat atc tgg atc 3971 Gly Leu Leu Arg Leu Gln Glu Ala Ala Glu # Gly Asn Ile Trp Ile 1310 # 1315 # 1320 gat ggg gtc cct atc acc cat gtg ggg ctg # cac aca ctg agg tcc 4016 Asp Gly Val Pro Ile Thr His Val Gly Leu # His Thr Leu Arg Ser 1325 # 1330 # 1335 cga atc acc atc atc cct cag gac cct gtc # ctg ttc cca ggc tct 4061 Arg Ile Thr Ile Ile Pro Gln Asp Pro Val # Leu Phe Pro Gly Ser 1340 # 1345 # 1350 ctg cgg atg aac ctg gac ctg ctt cag gag # cac aca gat gaa ggc 4106 Leu Arg Met Asn Leu Asp Leu Leu Gln Glu # His Thr Asp Glu Gly 1355 # 1360 # 1365 atc tgg gca gcg ctg gag aca gtg cag ctc # aag gcc ttc gtg acc 4151 Ile Trp Ala Ala Leu Glu Thr Val Gln Leu # Lys Ala Phe Val Thr 1370 # 1375 # 1380 agc ctg cct ggc cag ctg caa tat gag tgt # gca ggc cag gga gat 4196 Ser Leu Pro Gly Gln Leu Gln Tyr Glu Cys # Ala Gly Gln Gly Asp 1385 # 1390 # 1395 gac ctg agc gtg ggt cat aaa cag ctc ctg # tgc ctg gca cga gcc 4241 Asp Leu Ser Val Gly His Lys Gln Leu Leu # Cys Leu Ala Arg Ala 1400 # 1405 # 1410 ctt ctc cgg aaa acc cag atc ctc atc ctg # gac gag gcg act gcc 4286 Leu Leu Arg Lys Thr Gln Ile Leu Ile Leu # Asp Glu Ala Thr Ala 1415 # 1420 # 1425 tct gtg gac cca ggg acg gag atg cag atg # cag gcg gcc ctg gag 4331 Ser Val Asp Pro Gly Thr Glu Met Gln Met # Gln Ala Ala Leu Glu 1430 # 1435 # 1440 cgc tgg ttt aca cag tgt acc tta ctg ctt # atc gct cac cgc ctg 4376 Arg Trp Phe Thr Gln Cys Thr Leu Leu Leu # Ile Ala His Arg Leu 1445 # 1450 # 1455 cgc tcc gtg atg gac tgt gcc aga gtc cta # gtc atg gat gag ggg 4421 Arg Ser Val Met Asp Cys Ala Arg Val Leu # Val Met Asp Glu Gly 1460 # 1465 # 1470 cag gtg gca gaa agt ggc aat cct gct cag # ctg ctg gcc cag aaa 4466 Gln Val Ala Glu Ser Gly Asn Pro Ala Gln # Leu Leu Ala Gln Lys 1475 # 1480 # 1485 ggc ctg ttt tac agg cta gcc cat gag tcg # ggc ctc gct tga #4508 Gly Leu Phe Tyr Arg Leu Ala His Glu Ser # Gly Leu Ala 1490 # 1495 atgaggattc ttaccaaccc ccgtggagcc agccatagag cctgcagtgg ct #ggagatgc 4568 cagagactcc aatctaaact cctctttggg agggagatgg cagagaaagt ga #tggagtat 4628 tgggatacca gacccagaag aacccagcac gcccaggttg gcctgagcaa gg #ccatgccc 4688 accccaggcc aaagagaatg gtaactctca gcccaagctg tctacttcaa gg #ccacgccc 4748 actccaggcc aatcagattg gatgccctgg acccaggtga tggtgtgcac at #attcccta 4808 actccttatt ttgaagtcat tgtagatttc agtcacagtt ttaagaaata ac #acggagag 4868 aaactgtgac ccctctgccc tgtttattcc aagggtgaca ccttgtccaa ct #ctagagca 4928 tcacaccgac tctgaccgac tcgtctttac aactccaaaa aaaaaaaaaa aa # 4980 <210> SEQ ID NO 9 <211> LENGTH: 1498 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 9 Met Asn Ser Gly Arg Ser Met Ala Thr Pro Gl #y Glu Gln Cys Ala Gly 1 5 # 10 # 15 Leu Arg Val Trp Asn Gln Thr Glu Gln Glu Pr #o Ala Ala Tyr His Leu 20 # 25 # 30 Leu Ser Leu Cys Phe Val Arg Ala Ala Ser Se #r Trp Val Pro Pro Met 35 # 40 # 45 Tyr Leu Trp Val Leu Gly Pro Ile Tyr Leu Le #u Tyr Ile His Arg His 50 # 55 # 60 Gly Arg Cys Tyr Leu Arg Met Ser His Leu Ph #e Lys Thr Lys Met Val 65 #70 #75 #80 Leu Gly Leu Ala Leu Ile Leu Leu Tyr Thr Ph #e Asn Val Ala Val Pro 85 # 90 # 95 Leu Trp Arg Ile His Gln Gly Val Pro Gln Al #a Pro Glu Leu Leu Ile 100 # 105 # 110 His Pro Thr Val Trp Leu Thr Thr Met Ser Ph #e Ala Thr Phe Leu Ile 115 # 120 # 125 His Met Glu Arg Arg Lys Gly Val Arg Ser Se #r Gly Val Leu Phe Gly 130 # 135 # 140 Tyr Trp Leu Leu Cys Cys Ile Leu Pro Gly Il #e Asn Thr Val Gln Gln 145 1 #50 1 #55 1 #60 Ala Ser Ala Gly Asn Leu Arg Gln Glu Pro Le #u His His Leu Ala Thr 165 # 170 # 175 Tyr Leu Cys Leu Ser Leu Val Val Ala Glu Le #u Val Leu Ser Cys Leu 180 # 185 # 190 Val Asp Gln Pro Pro Phe Phe Ser Glu Asp Se #r Gln Pro Leu Asn Pro 195 # 200 # 205 Cys Pro Glu Ala Glu Ala Ser Phe Pro Ser Ly #s Ala Met Phe Trp Trp 210 # 215 # 220 Ala Ser Gly Leu Leu Trp Arg Gly Tyr Lys Ly #s Leu Leu Gly Pro Lys 225 2 #30 2 #35 2 #40 Asp Leu Trp Ser Leu Gly Arg Glu Asn Ser Se #r Glu Glu Leu Val Ser 245 # 250 # 255 Gln Leu Glu Arg Glu Trp Arg Arg Ser Cys As #n Gly Leu Pro Gly His 260 # 265 # 270 Lys Gly His Ser Ser Val Gly Ala Pro Glu Th #r Glu Ala Phe Leu Gln 275 # 280 # 285 Pro Glu Arg Ser Gln Arg Gly Pro Leu Leu Ar #g Ala Ile Trp Arg Val 290 # 295 # 300 Phe Arg Ser Thr Phe Leu Leu Gly Thr Leu Se #r Leu Val Ile Ser Asp 305 3 #10 3 #15 3 #20 Ala Phe Arg Phe Ala Val Pro Lys Leu Leu Se #r Leu Phe Leu Glu Phe 325 # 330 # 335 Met Gly Asp Arg Asn Ser Ser Ala Trp Thr Gl #y Trp Leu Leu Ala Val 340 # 345 # 350 Leu Met Phe Ala Ala Ala Cys Leu Gln Thr Le #u Phe Glu Gln Gln His 355 # 360 # 365 Met Tyr Arg Ala Lys Val Leu Gln Met Arg Le #u Arg Thr Ala Ile Thr 370 # 375 # 380 Gly Leu Val Tyr Arg Lys Val Leu Val Leu Se #r Ser Gly Ser Arg Lys 385 3 #90 3 #95 4 #00 Ser Ser Ala Ala Gly Asp Val Val Asn Leu Va #l Ser Val Asp Ile Gln 405 # 410 # 415 Arg Leu Ala Glu Ser Ile Ile Tyr Leu Asn Gl #y Leu Trp Leu Leu Phe 420 # 425 # 430 Leu Trp Ile Phe Val Cys Phe Val Tyr Leu Tr #p Gln Leu Leu Gly Pro 435 # 440 # 445 Ser Ala Leu Thr Ala Val Ala Val Phe Leu Se #r Leu Leu Pro Leu Asn 450 # 455 # 460 Phe Phe Ile Thr Lys Lys Arg Gly Phe His Gl #n Glu Glu Gln Met Arg 465 4 #70 4 #75 4 #80 Gln Lys Ala Ser Arg Ala Arg Leu Thr Ser Se #r Met Leu Arg Thr Val 485 # 490 # 495 Arg Thr Ile Lys Ser His Gly Trp Glu His Al #a Phe Leu Glu Arg Leu 500 # 505 # 510 Leu His Ile Arg Gly Gln Glu Leu Ser Ala Le #u Lys Thr Ser Thr Leu 515 # 520 # 525 Leu Phe Ser Val Ser Leu Val Ser Phe Gln Va #l Ser Thr Phe Leu Val 530 # 535 # 540 Ala Leu Val Val Phe Ala Val His Thr Leu Va #l Ala Glu Asp Asn Ala 545 5 #50 5 #55 5 #60 Met Asp Ala Glu Lys Ala Phe Val Thr Leu Th #r Val Leu Ser Ile Leu 565 # 570 # 575 Asn Lys Ala Gln Ala Phe Leu Pro Phe Ser Va #l His Cys Ile Val Gln 580 # 585 # 590 Ala Arg Val Ser Phe Asp Arg Leu Ala Ala Ph #e Leu Cys Leu Glu Glu 595 # 600 # 605 Val Asp Pro Asn Gly Met Ile Ala Ser Asn Se #r Arg Arg Ser Ser Lys 610 # 615 # 620 Asp Arg Ile Ser Val His Asn Gly Thr Phe Al #a Trp Ser Gln Glu Ser 625 6 #30 6 #35 6 #40 Pro Pro Cys Leu His Gly Ile Asn Leu Thr Va #l Pro Gln Gly Cys Leu 645 # 650 # 655 Leu Ala Val Val Gly Pro Val Gly Ala Gly Ly #s Ser Ser Leu Leu Ser 660 # 665 # 670 Ala Leu Leu Gly Glu Leu Leu Lys Val Glu Gl #y Ser Val Ser Ile Glu 675 # 680 # 685 Gly Ser Val Ala Tyr Val Pro Gln Glu Ala Tr #p Val Gln Asn Thr Ser 690 # 695 # 700 Val Ala Glu Asn Val Cys Phe Arg Gln Glu Le #u Asp Leu Pro Trp Leu 705 7 #10 7 #15 7 #20 Gln Lys Val Leu Asp Ala Cys Ala Leu Gly Se #r Asp Val Ala Ser Phe 725 # 730 # 735 Pro Ala Gly Val His Thr Pro Ile Gly Glu Gl #n Gly Met Asn Leu Ser 740 # 745 # 750 Gly Gly Gln Lys Gln Arg Leu Ser Leu Ala Ar #g Ala Val Tyr Lys Lys 755 # 760 # 765 Ala Ala Ile Tyr Leu Leu Asp Asp Pro Leu Al #a Ala Leu Asp Ala His 770 # 775 # 780 Val Ser Gln Gln Val Phe Lys Gln Val Ile Gl #y Pro Ser Gly Leu Leu 785 7 #90 7 #95 8 #00 Gln Gly Thr Thr Arg Ile Leu Val Thr His Th #r Leu His Val Leu Pro 805 # 810 # 815 Gln Ala Asp Arg Ile Leu Val Leu Ala Asn Gl #y Thr Ile Ala Glu Met 820 # 825 # 830 Gly Ser Tyr Gln Asp Leu Leu Gln Arg Asn Gl #y Ala Leu Val Gly Leu 835 # 840 # 845 Leu Asp Gly Ala Arg Gln Pro Ala Gly Thr Hi #s Asp Ala Ala Thr Ser 850 # 855 # 860 Asp Asp Leu Gly Gly Phe Pro Gly Gly Gly Ar #g Pro Thr Cys Arg Pro 865 8 #70 8 #75 8 #80 Asp Arg Pro Arg Pro Thr Glu Ala Ala Pro Va #l Lys Gly Arg Ser Thr 885 # 890 # 895 Ser Glu Val Gln Met Glu Ala Ser Leu Asp As #p Pro Glu Ala Thr Gly 900 # 905 # 910 Leu Thr Ala Glu Glu Asp Ser Val Arg Tyr Gl #y Arg Val Lys Ile Thr 915 # 920 # 925 Ile Tyr Leu Ser Tyr Leu Arg Ala Val Gly Th #r Pro Leu Cys Thr Tyr 930 # 935 # 940 Thr Leu Phe Leu Phe Leu Cys Gln Gln Val Al #a Ser Phe Ser Gln Gly 945 9 #50 9 #55 9 #60 Tyr Trp Leu Ser Leu Trp Ala Asp Asp Pro Va #l Val Asp Gly Arg Gln 965 # 970 # 975 Met His Ala Ala Leu Arg Gly Trp Val Phe Gl #y Leu Leu Gly Cys Leu 980 # 985 # 990 Gln Ala Ile Gly Leu Phe Ala Ser Met Ala #Ala Val Phe Leu Gly Gly 995 # 1000 # 1005 Ala Arg Ala Ser Gly Leu Leu Phe Arg S #er Leu Leu Trp Asp Val 1010 # 1015 # 1020 Ala Arg Ser Pro Ile Gly Phe Phe Glu A #rg Thr Pro Val Gly Asn 1025 # 1030 # 1035 Leu Leu Asn Arg Phe Ser Lys Glu Thr A #sp Thr Val Asp Val Asp 1040 # 1045 # 1050 Ile Pro Asp Lys Leu Arg Ser Leu Leu T #hr Tyr Ala Phe Gly Leu 1055 # 1060 # 1065 Leu Glu Val Gly Leu Ala Val Thr Met A #la Thr Pro Leu Ala Ile 1070 # 1075 # 1080 Val Ala Ile Leu Pro Leu Met Val Leu T #yr Ala Gly Phe Gln Ser 1085 # 1090 # 1095 Leu Tyr Val Ala Thr Ser Cys Gln Leu A #rg Arg Leu Glu Ser Ala 1100 # 1105 # 1110 Arg Tyr Ser Ser Val Cys Ser His Met A #la Glu Thr Phe Gln Gly 1115 # 1120 # 1125 Ser Leu Val Val Arg Ala Phe Arg Ala G #ln Ala Ser Phe Thr Ala 1130 # 1135 # 1140 Gln His Asp Ala Leu Met Asp Glu Asn G #ln Arg Val Ser Phe Pro 1145 # 1150 # 1155 Lys Leu Val Ala Asp Arg Trp Leu Ala T #hr Asn Leu Glu Leu Leu 1160 # 1165 # 1170 Gly Asn Gly Leu Val Phe Val Ala Ala T #hr Cys Ala Val Leu Ser 1175 # 1180 # 1185 Lys Ala His Leu Ser Ala Gly Leu Val G #ly Phe Ser Val Ser Ala 1190 # 1195 # 1200 Ala Leu Gln Val Thr Gln Thr Leu Gln T #rp Val Val Arg Ser Trp 1205 # 1210 # 1215 Thr Asp Leu Glu Asn Ser Met Val Ala V #al Glu Arg Val Gln Asp 1220 # 1225 # 1230 Tyr Ala Arg Ile Pro Lys Glu Ala Pro T #rp Arg Leu Pro Thr Cys 1235 # 1240 # 1245 Ala Ala Gln Pro Leu Trp Pro Cys Gly G #ly Gln Ile Glu Phe Arg 1250 # 1255 # 1260 Asp Phe Gly Leu Arg His Arg Pro Glu L #eu Pro Leu Ala Val Gln 1265 # 1270 # 1275 Gly Val Ser Leu Lys Ile His Ala Gly G #lu Lys Val Gly Ile Val 1280 # 1285 # 1290 Gly Arg Thr Gly Ala Gly Lys Ser Ser L #eu Ala Trp Gly Leu Leu 1295 # 1300 # 1305 Arg Leu Gln Glu Ala Ala Glu Gly Asn I #le Trp Ile Asp Gly Val 1310 # 1315 # 1320 Pro Ile Thr His Val Gly Leu His Thr L #eu Arg Ser Arg Ile Thr 1325 # 1330 # 1335 Ile Ile Pro Gln Asp Pro Val Leu Phe P #ro Gly Ser Leu Arg Met 1340 # 1345 # 1350 Asn Leu Asp Leu Leu Gln Glu His Thr A #sp Glu Gly Ile Trp Ala 1355 # 1360 # 1365 Ala Leu Glu Thr Val Gln Leu Lys Ala P #he Val Thr Ser Leu Pro 1370 # 1375 # 1380 Gly Gln Leu Gln Tyr Glu Cys Ala Gly G #ln Gly Asp Asp Leu Ser 1385 # 1390 # 1395 Val Gly His Lys Gln Leu Leu Cys Leu A #la Arg Ala Leu Leu Arg 1400 # 1405 # 1410 Lys Thr Gln Ile Leu Ile Leu Asp Glu A #la Thr Ala Ser Val Asp 1415 # 1420 # 1425 Pro Gly Thr Glu Met Gln Met Gln Ala A #la Leu Glu Arg Trp Phe 1430 # 1435 # 1440 Thr Gln Cys Thr Leu Leu Leu Ile Ala H #is Arg Leu Arg Ser Val 1445 # 1450 # 1455 Met Asp Cys Ala Arg Val Leu Val Met A #sp Glu Gly Gln Val Ala 1460 # 1465 # 1470 Glu Ser Gly Asn Pro Ala Gln Leu Leu A #la Gln Lys Gly Leu Phe 1475 # 1480 # 1485 Tyr Arg Leu Ala His Glu Ser Gly Leu A #la 1490 # 1495 <210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to A mutation in exon 24 of the ABCC6 gene <400> SEQUENCE: 10 cagtggtcca ggcattccga # # # 20 <210> SEQ ID NO 11 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to T mutation in exon 24 of the ABCC6 gene <400> SEQUENCE: 11 cagtggtccg ggcattctga # # # 20 <210> SEQ ID NO 12 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to C mutation in exon 24 of the ABCC6 gene <400> SEQUENCE: 12 gacccttgga gtcagccagc tactcg # # 26 <210> SEQ ID NO 13 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to G mutation in exon 24 of the ABCC6 gene <400> SEQUENCE: 13 gacgcttgga gtcagccagc tactgg # # 26 <210> SEQ ID NO 14 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to T mutation in exon 26 of the ABCC gene <400> SEQUENCE: 14 ggatgtagga ctatgcctgg acgccc # # 26 <210> SEQ ID NO 15 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to C mutation in exon 26 of the ABCC6 gene <400> SEQUENCE: 15 ggatgcagga ctatgcctgc acgccc # # 26 <210> SEQ ID NO 16 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to A mutation in exon 27 of the ABCC6 gene <400> SEQUENCE: 16 tgcagctaag cccccctggc # # # 20 <210> SEQ ID NO 17 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # deletion of a T in exon 27 of the ABCC6 gene <400> SEQUENCE: 17 tgcagctcag ccccccggc # # # 19 <210> SEQ ID NO 18 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to A mutation in exon 27 of the ABCC6 gene <400> SEQUENCE: 18 gctccaagct ccctggaggc # # # 20 <210> SEQ ID NO 19 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to T mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 19 ctgtggctcc aggaggcagc tgagggtggg # # 30 <210> SEQ ID NO 20 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to A mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 20 ctgcagctcc aggaggcagc tgagggtggg # # 30 <210> SEQ ID NO 21 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to A mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 21 ctgcggctcc aggaggcagc tgagagtggg # # 30 <210> SEQ ID NO 22 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to T mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 22 gtgggcatct ttggcaggac cgggg # # 25 <210> SEQ ID NO 23 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # C to T mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 23 gtgggcatcg ttggcaggac tgggg # # 25 <210> SEQ ID NO 24 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to A mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 24 gtgggcatcg ttggcaggac caggg # # 25 <210> SEQ ID NO 25 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: primer corresponding to a # G to C mutation in exon 28 of the ABCC6 gene <400> SEQUENCE: 25 gtgggcatcg ttggcaggac cgggc # # 25 <210> SEQ ID NO 26 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(12) <223> OTHER INFORMATION: Mutation in Exon 24 of # human MRP6 gene <400> SEQUENCE: 26 cgg gca ttc tga acccaggcc # # #21 Arg Ala Phe 1 <210> SEQ ID NO 27 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <223> OTHER INFORMATION: mutation in Intron 21 #of human MRP6 gene <400> SEQUENCE: 27 tacggcaggt taaccacc # # # 18